These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30959879)

  • 1. Survey of Toxin⁻Antitoxin Systems in
    Shidore T; Zeng Q; Triplett LR
    Toxins (Basel); 2019 Apr; 11(4):. PubMed ID: 30959879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomally Encoded
    Peng J; Triplett LR; Schachterle JK; Sundin GW
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli.
    Masuda H; Tan Q; Awano N; Wu KP; Inouye M
    Mol Microbiol; 2012 Jun; 84(5):979-89. PubMed ID: 22515815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB.
    Heller DM; Tavag M; Hochschild A
    PLoS Genet; 2017 Sep; 13(9):e1007007. PubMed ID: 28931012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Type IV Toxin/Antitoxin Systems in Cryptic Prophages of Escherichia coli K-12.
    Wen Z; Wang P; Sun C; Guo Y; Wang X
    Toxins (Basel); 2017 Mar; 9(3):. PubMed ID: 28257056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp.
    Smits TH; Rezzonico F; Kamber T; Blom J; Goesmann A; Frey JE; Duffy B
    Mol Plant Microbe Interact; 2010 Apr; 23(4):384-93. PubMed ID: 20192826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora.
    Peng J; Triplett LR; Sundin GW
    BMC Genomics; 2021 Jan; 22(1):74. PubMed ID: 33482720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.
    Müller I; Gernold M; Schneider B; Geider K
    J Mol Microbiol Biotechnol; 2012; 22(1):59-70. PubMed ID: 22456518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen
    Tremblay O; Thow Z; Merrill AR
    Toxins (Basel); 2020 Dec; 12(12):. PubMed ID: 33322547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB.
    Tan Q; Awano N; Inouye M
    Mol Microbiol; 2011 Jan; 79(1):109-18. PubMed ID: 21166897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomic analysis of Erwinia amylovora reveals novel insights in phylogenetic arrangement, plasmid diversity, and streptomycin resistance.
    Parcey M; Gayder S; Morley-Senkler V; Bakkeren G; Úrbez-Torres JR; Ali S; Castle AJ; Svircev AM
    Genomics; 2020 Sep; 112(5):3762-3772. PubMed ID: 32259573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the stbD/E toxin-antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae.
    Unterholzner SJ; Hailer B; Poppenberger B; Rozhon W
    Plasmid; 2013 Sep; 70(2):216-25. PubMed ID: 23632277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen
    Boss L; Górniak M; Lewańczyk A; Morcinek-Orłowska J; Barańska S; Szalewska-Pałasz A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells.
    Goormaghtigh F; Fraikin N; Putrinš M; Hallaert T; Hauryliuk V; Garcia-Pino A; Sjödin A; Kasvandik S; Udekwu K; Tenson T; Kaldalu N; Van Melderen L
    mBio; 2018 Jun; 9(3):. PubMed ID: 29895634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoinducer-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria.
    Mohammadi M; Geider K
    FEMS Microbiol Lett; 2007 Jan; 266(1):34-41. PubMed ID: 17092294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary insights from Erwinia amylovora genomics.
    Smits TH; Rezzonico F; Duffy B
    J Biotechnol; 2011 Aug; 155(1):34-9. PubMed ID: 21040749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.
    Zeng Q; Cui Z; Wang J; Childs KL; Sundin GW; Cooley DR; Yang CH; Garofalo E; Eaton A; Huntley RB; Yuan X; Schultes NP
    Mol Plant Pathol; 2018 Jul; 19(7):1652-1666. PubMed ID: 29178620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and Application of the CRISPR-Cas System in the Plant Pathogen
    Parcey M; Gayder S; Castle AJ; Svircev AM
    Appl Environ Microbiol; 2022 Apr; 88(7):e0251321. PubMed ID: 35285707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence.
    Aldridge P; Metzger M; Geider K
    Mol Gen Genet; 1997 Nov; 256(6):611-9. PubMed ID: 9435786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations.
    Klee SM; Mostafa I; Chen S; Dufresne C; Lehman BL; Sinn JP; Peter KA; McNellis TW
    Mol Plant Pathol; 2018 Jul; 19(7):1667-1678. PubMed ID: 29232043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.