BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30959912)

  • 1. Flexible 3D-Printed EEG Electrodes.
    Velcescu A; Lindley A; Cursio C; Krachunov S; Beach C; Brown CA; Jones AKP; Casson AJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully 3D-Printed Dry EEG Electrodes.
    Tong A; Perera P; Sarsenbayeva Z; McEwan A; De Silva AC; Withana A
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs.
    Kimura M; Nakatani S; Nishida SI; Taketoshi D; Araki N
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Dry EEG Electrodes.
    Krachunov S; Casson AJ
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings.
    Fiedler P; Fonseca C; Pedrosa P; Martins A; Vaz F; Griebel S; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():547-50. PubMed ID: 24109745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D-Printed Sensor for Monitoring Biosignals in Small Animals.
    Cho SJ; Byun D; Nam TS; Choi SY; Lee BG; Kim MK; Kim S
    J Healthc Eng; 2017; 2017():9053764. PubMed ID: 29209491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Soft sEMG Sensing Structures Using 3D-Printing Technologies.
    Wolterink G; Dias P; Sanders RGP; Muijzer F; van Beijnum BJ; Veltink P; Krijnen G
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32752062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition.
    Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
    Baek HJ; Lee HJ; Lim YG; Park KS
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3422-31. PubMed ID: 22961261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations.
    Górecka J; Makiewicz P
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Verification of skin paste electrodes used in wireless polysomnography].
    Ma YD; Huang D; Chen YF; Jiang HY; Liu JH; Sun HQ; Li ZH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):358-363. PubMed ID: 29643540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.