BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30959968)

  • 41. Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.
    Beane G; Brown BS; Johns P; Devkota T; Hartland GV
    J Phys Chem Lett; 2018 Apr; 9(7):1676-1681. PubMed ID: 29547298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores.
    Chan WP; Chen JH; Chou WL; Chen WY; Liu HY; Hu HC; Jeng CC; Li JR; Chen C; Chen SY
    ACS Nano; 2021 Aug; 15(8):13085-13093. PubMed ID: 34313105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials.
    Kirschner MS; Ding W; Li Y; Chapman CT; Lei A; Lin XM; Chen LX; Schatz GC; Schaller RD
    Nano Lett; 2018 Jan; 18(1):442-448. PubMed ID: 29191022
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers.
    Schlather AE; Large N; Urban AS; Nordlander P; Halas NJ
    Nano Lett; 2013 Jul; 13(7):3281-6. PubMed ID: 23746061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons.
    Bigeon J; Le Liepvre S; Vassant S; Belabas N; Bardou N; Minot C; Yacomotti A; Levenson A; Charra F; Barbay S
    J Phys Chem Lett; 2017 Nov; 8(22):5626-5632. PubMed ID: 29094949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films.
    Muckel F; Guye KN; Gallagher SM; Liu Y; Ginger DS
    Nano Lett; 2021 Jul; 21(14):6124-6131. PubMed ID: 34269589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles.
    Guo J; Wu F; Song G; Huang Y; Jiao R; Yu L
    Nanoscale; 2021 Oct; 13(37):15812-15818. PubMed ID: 34528651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule strong coupling at room temperature in plasmonic nanocavities.
    Chikkaraddy R; de Nijs B; Benz F; Barrow SJ; Scherman OA; Rosta E; Demetriadou A; Fox P; Hess O; Baumberg JJ
    Nature; 2016 Jul; 535(7610):127-30. PubMed ID: 27296227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electroluminescence as a Probe of Strong Exciton-Plasmon Coupling in Few-Layer WSe
    Zhu Y; Yang J; Abad-Arredondo J; Fernández-Domínguez AI; Garcia-Vidal FJ; Natelson D
    Nano Lett; 2024 Jan; 24(1):525-532. PubMed ID: 38109687
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the role of oscillator strength and charge of exciton forming molecular J-aggregates in controlling nanoscale plasmon-exciton interactions.
    Das K; Dey J; Verma MS; Kumar M; Chandra M
    Phys Chem Chem Phys; 2020 Sep; 22(36):20499-20506. PubMed ID: 32966416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates.
    Melnikau D; Esteban R; Savateeva D; Sánchez-Iglesias A; Grzelczak M; Schmidt MK; Liz-Marzán LM; Aizpurua J; Rakovich YP
    J Phys Chem Lett; 2016 Jan; 7(2):354-62. PubMed ID: 26726134
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe
    Zheng D; Zhang S; Deng Q; Kang M; Nordlander P; Xu H
    Nano Lett; 2017 Jun; 17(6):3809-3814. PubMed ID: 28530102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity.
    Gupta SN; Bitton O; Neuman T; Esteban R; Chuntonov L; Aizpurua J; Haran G
    Nat Commun; 2021 Feb; 12(1):1310. PubMed ID: 33637699
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons.
    Chen X; Chen YH; Qin J; Zhao D; Ding B; Blaikie RJ; Qiu M
    Nano Lett; 2017 May; 17(5):3246-3251. PubMed ID: 28394619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strong coupling between monolayer quantum emitter WS
    Lv F; Wang Z; Huang Y; Chen J; La J; Wu D; Guo Z; Liu Y; Zhang Y; Wang Y; Wang W
    Opt Lett; 2022 Jan; 47(1):190-193. PubMed ID: 34951914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.