BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30959968)

  • 61. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.
    Todisco F; D'Agostino S; Esposito M; Fernández-Domínguez AI; De Giorgi M; Ballarini D; Dominici L; Tarantini I; Cuscuná M; Della Sala F; Gigli G; Sanvitto D
    ACS Nano; 2015 Oct; 9(10):9691-9. PubMed ID: 26378956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dual Strong Couplings Between TPPS J-Aggregates and Aluminum Plasmonic States.
    Li J; Ueno K; Uehara H; Guo J; Oshikiri T; Misawa H
    J Phys Chem Lett; 2016 Jul; 7(14):2786-91. PubMed ID: 27383561
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.
    Zhao X; Chen L; Chen J; Shi W; Liu F
    Opt Express; 2016 Sep; 24(18):20219-27. PubMed ID: 27607629
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Strong coupling between plasmonic nanocavity gold nanorods and quantum dots emitter.
    Zulkifli B; Ahmad Khushaini MA; Azeman NH; Md Jamil MS; Tg Abdul Aziz TH; Md Zain AR
    Opt Express; 2024 May; 32(11):19676-19683. PubMed ID: 38859097
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes.
    El-Saeed AH; Allam NK
    Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-pyramid Array onto a Silica-Gold Film.
    Zheng P; Kasani S; Wu N
    Nanoscale Horiz; 2019 Mar; 4(2):516-525. PubMed ID: 31463080
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies.
    Wurtz GA; Evans PR; Hendren W; Atkinson R; Dickson W; Pollard RJ; Zayats AV; Harrison W; Bower C
    Nano Lett; 2007 May; 7(5):1297-303. PubMed ID: 17455984
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Second Harmonic Generation from a Single Plasmonic Nanorod Strongly Coupled to a WSe
    Li C; Lu X; Srivastava A; Storm SD; Gelfand R; Pelton M; Sukharev M; Harutyunyan H
    Nano Lett; 2021 Feb; 21(4):1599-1605. PubMed ID: 33306403
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Turning the challenge of quantum biology on its head: biological control of quantum optical systems.
    Lishchuk A; Vasilev C; Johnson MP; Hunter CN; Törmä P; Leggett GJ
    Faraday Discuss; 2019 Jul; 216(0):57-71. PubMed ID: 31016297
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantum Plexcitonic Sensing.
    Zheng P; Semancik S; Barman I
    Nano Lett; 2023 Oct; 23(20):9529-9537. PubMed ID: 37819891
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiband tunable exciton-induced transparencies: Exploiting both strong and intermediate coupling in a nanocube-hexagonal-nanoplate heterodimer J-aggregates hybrid.
    Hu Z; Cui X; Li Y; Han X; Hu H
    Opt Express; 2022 Nov; 30(24):43371-43383. PubMed ID: 36523036
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures.
    Vasa P; Pomraenke R; Cirmi G; De Re E; Wang W; Schwieger S; Leipold D; Runge E; Cerullo G; Lienau C
    ACS Nano; 2010 Dec; 4(12):7559-65. PubMed ID: 21082799
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Entanglement generation by strong coupling between surface lattice resonance and exciton in an Al nanoarray-coated WS
    Shi X; Wang Z; Xiao J; Li L; Wei S; Guo Z; Wang Y; Wang W
    Discov Nano; 2023 Mar; 18(1):32. PubMed ID: 36877371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS
    Li H; Qin M; Ren Y; Hu J
    Opt Express; 2019 Aug; 27(16):22951-22959. PubMed ID: 31510579
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Correction: Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2021 Mar; 13(8):4687. PubMed ID: 33616135
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of
    Wang CY; Sang Y; Yang X; Raja SS; Cheng CW; Li H; Ding Y; Sun S; Ahn H; Shih CK; Gwo S; Shi J
    Nano Lett; 2021 Jan; 21(1):605-611. PubMed ID: 33350840
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Collective strong coupling in a plasmonic nanocavity.
    Varguet H; Díaz-Valles AA; Guérin S; Jauslin HR; Colas des Francs G
    J Chem Phys; 2021 Feb; 154(8):084303. PubMed ID: 33639753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.