BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30960018)

  • 1. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes.
    Szewczyk PK; Ura DP; Metwally S; Knapczyk-Korczak J; Gajek M; Marzec MM; Bernasik A; Stachewicz U
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Investigation of Wenzel and Cassie Wetting States on Porous Films and Fiber Meshes.
    Onda T
    Langmuir; 2022 Nov; 38(45):13744-13752. PubMed ID: 36322405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
    Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY
    J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective quantification of surface roughness parameters affecting superhydrophobicity.
    Cho Y; Park CH
    RSC Adv; 2020 Aug; 10(52):31251-31260. PubMed ID: 35520686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet.
    Singh RK; Hodgson PD; Sen N; Das S
    Langmuir; 2021 Mar; 37(10):3038-3048. PubMed ID: 33651946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation.
    Tran PA; Webster TJ
    Int J Nanomedicine; 2013; 8():2001-9. PubMed ID: 23737667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced wetting behavior at electrospun polyamide nanofiber surfaces.
    Stachewicz U; Barber AH
    Langmuir; 2011 Mar; 27(6):3024-9. PubMed ID: 21332217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks.
    Stachewicz U; Bailey RJ; Zhang H; Stone CA; Willis CR; Barber AH
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16645-52. PubMed ID: 26176304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting properties of silicon films from alkyl-passivated particles produced by mechanochemical synthesis.
    Hallmann S; Fink MJ; Mitchell BS
    J Colloid Interface Sci; 2010 Aug; 348(2):634-41. PubMed ID: 20580764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.