These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30960079)
1. Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Shi C; Sun W; Sun Y; Chen L; Xu Y; Tang M Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960079 [TBL] [Abstract][Full Text] [Related]
2. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant. Hu P; Zhuang S; Shen S; Yang Y; Yang H Water Res; 2021 Feb; 189():116578. PubMed ID: 33160239 [TBL] [Abstract][Full Text] [Related]
3. UV-initiated template copolymerization of AM and MAPTAC: Microblock structure, copolymerization mechanism, and flocculation performance. Li X; Zheng H; Gao B; Sun Y; Liu B; Zhao C Chemosphere; 2017 Jan; 167():71-81. PubMed ID: 27710845 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of acidification and oxidation of sludge to improve the effect of a starch-based flocculant on the dewaterability of sewage sludge. Wei H; Hu P; Li A; Yang H J Environ Manage; 2019 Feb; 231():405-412. PubMed ID: 30368150 [TBL] [Abstract][Full Text] [Related]
5. Effects of surfactants on the improvement of sludge dewaterability using cationic flocculants. Sun Y; Zheng H; Zhai J; Teng H; Zhao C; Zhao C; Liao Y PLoS One; 2014; 9(10):e111036. PubMed ID: 25347394 [TBL] [Abstract][Full Text] [Related]
6. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants. Wang S; Chen H Sci Total Environ; 2023 Dec; 903():166958. PubMed ID: 37696410 [TBL] [Abstract][Full Text] [Related]
7. Chitosan Modified Cationic Polyacrylamide Initiated by UV-H Chen J; Xu X; Nie R; Feng L; Li X; Liu B Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33218149 [TBL] [Abstract][Full Text] [Related]
8. Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement. Zhang W; Wang H; Li L; Li D; Wang Q; Xu Q; Wang D Sci Total Environ; 2019 Jun; 670():98-109. PubMed ID: 30903908 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and evaluation of dewatering properties of chitosan-grafting DMDAAC flocculants. Wang D; Zhao T; Yan L; Mi Z; Gu Q; Zhang Y Int J Biol Macromol; 2016 Nov; 92():761-768. PubMed ID: 27471087 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant. Lin Q; Peng H; Zhong S; Xiang J J Hazard Mater; 2015 Mar; 285():199-206. PubMed ID: 25497034 [TBL] [Abstract][Full Text] [Related]
11. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. Feng L; Liu S; Zheng H; Liang J; Sun Y; Zhang S; Chen X Ultrason Sonochem; 2018 Jun; 44():53-63. PubMed ID: 29680628 [TBL] [Abstract][Full Text] [Related]
12. Improving waste activated sludge dewaterability with sodium periodate pre-oxidation on extracellular polymeric substances. Lan B; Jin R; Liu G; Dong B; Zhou J; Xing D Water Environ Res; 2021 Sep; 93(9):1680-1689. PubMed ID: 33713351 [TBL] [Abstract][Full Text] [Related]
13. The enhanced dewaterability of sludge by a starch-based flocculant combined with attapulgite. Shen S; Wei H; Pan Y; Hu P; Yang H Sci Rep; 2023 Jan; 13(1):402. PubMed ID: 36624301 [TBL] [Abstract][Full Text] [Related]
14. The influence of hydrophobicity on sludge dewatering associated with cationic starch-based flocculants. Hu P; Shen S; Zhao D; Wei H; Ge J; Jia F; Zhang X; Yang H J Environ Manage; 2021 Oct; 296():113218. PubMed ID: 34246906 [TBL] [Abstract][Full Text] [Related]
15. Photoinitiated polymerization of cationic acrylamide in aqueous solution: synthesis, characterization, and sludge dewatering performance. Zheng H; Liao Y; Zheng M; Zhu C; Ji F; Ma J; Fan W ScientificWorldJournal; 2014; 2014():465151. PubMed ID: 24683343 [TBL] [Abstract][Full Text] [Related]
16. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Wu P; Yi J; Feng L; Li X; Chen Y; Liu Z; Tian S; Li S; Khan S; Sun Y Int J Biol Macromol; 2020 Jul; 155():708-720. PubMed ID: 32259538 [TBL] [Abstract][Full Text] [Related]
17. Sludge dewaterability: The variation of extracellular polymeric substances during sludge conditioning with two natural organic conditioners. Faye MCAS; Zhang KK; Peng S; Zhang Y J Environ Manage; 2019 Dec; 251():109559. PubMed ID: 31550604 [TBL] [Abstract][Full Text] [Related]
18. A novel acrylamide-free flocculant and its application for sludge dewatering. Lu L; Pan Z; Hao N; Peng W Water Res; 2014 Jun; 57():304-12. PubMed ID: 24731856 [TBL] [Abstract][Full Text] [Related]
19. Preparation of amphiphilic cationic polyacrylamide (CPAM) with cationic microblock structure to enhance printing and dyeing sludge dewatering and condition performance. Chi N; Liu J; Lei M; Feng L Environ Sci Pollut Res Int; 2023 Jan; 30(5):13079-13093. PubMed ID: 36125686 [TBL] [Abstract][Full Text] [Related]
20. Improved sludge dewaterability by tannic acid conditioning: Temperature, thermodynamics and mechanism studies. Ge D; Yuan H; Shen Y; Zhang W; Zhu N Chemosphere; 2019 Sep; 230():14-23. PubMed ID: 31102867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]