These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 30960143)
1. Solubility Difference between Pectic Fractions from Creeping Fig Seeds. Wang RS; He XH; Lin H; Liang RH; Liang L; Chen J; Liu CM Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960143 [TBL] [Abstract][Full Text] [Related]
2. Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Liang RH; Chen J; Liu W; Liu CM; Yu W; Yuan M; Zhou XQ Carbohydr Polym; 2012 Jan; 87(1):76-83. PubMed ID: 34663033 [TBL] [Abstract][Full Text] [Related]
3. Cotyledon pectin molecular interconversions explain pectin solubilization during cooking of common beans (Phaseolus vulgaris). Chigwedere CM; Nkonkola CM; Rai S; Kyomugasho C; Kermani ZJ; Pallares Pallares A; Van Loey AM; Grauwet T; Hendrickx ME Food Res Int; 2019 Feb; 116():462-470. PubMed ID: 30716969 [TBL] [Abstract][Full Text] [Related]
4. New insight into pectic fractions of cell wall: Impact of extraction on pectin structure and in vitro gut fermentation. Zhao Y; Bi J; Zhao X; Engelsen SB; Wu X; Ma Y; Guo Y; Du Q; Yi J Int J Biol Macromol; 2023 Dec; 253(Pt 8):127515. PubMed ID: 37865353 [TBL] [Abstract][Full Text] [Related]
5. Extraction and characterization of pectic polysaccharides from easy- and hard-to-cook common beans (Phaseolus vulgaris). Njoroge DM; Kinyanjui PK; Makokha AO; Christiaens S; Shpigelman A; Sila DN; Hendrickx ME Food Res Int; 2014 Oct; 64():314-322. PubMed ID: 30011656 [TBL] [Abstract][Full Text] [Related]
6. The effect of high speed shearing on disaggregation and degradation of pectin from creeping fig seeds. Chen J; Wu SS; Liang RH; Liu W; Liu CM; Shuai XX; Wang ZJ Food Chem; 2014 Dec; 165():1-8. PubMed ID: 25038641 [TBL] [Abstract][Full Text] [Related]
7. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Chylińska M; Szymańska-Chargot M; Zdunek A Carbohydr Polym; 2016 Dec; 154():48-54. PubMed ID: 27577895 [TBL] [Abstract][Full Text] [Related]
8. Effect of methodology in estimating and interpreting water-extractable phosphorus in animal manures. Vadas PA; Kleinman PJ J Environ Qual; 2006; 35(4):1151-9. PubMed ID: 16738401 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic degradation studies of pectin and cellulose from red beets. Dongowski G Nahrung; 2001 Oct; 45(5):324-31. PubMed ID: 11715343 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical Characterization of Pectic Polysaccharides from Rose Essential Oil Industry By-Products. Slavov A; Chalova V Foods; 2024 Jan; 13(2):. PubMed ID: 38254571 [TBL] [Abstract][Full Text] [Related]
11. Identification and possible roles of three types of endopeptidase from germinated wheat seeds. Sutoh K; Kato H; Minamikawa T J Biochem; 1999 Oct; 126(4):700-7. PubMed ID: 10502678 [TBL] [Abstract][Full Text] [Related]
12. Water-Extractable Phosphorus in Animal Manure and Manure Compost: Quantities, Characteristics, and Temporal Changes. Liu J; Spargo JT; Kleinman PJA; Meinen R; Moore PA; Beegle DB J Environ Qual; 2018 May; 47(3):471-479. PubMed ID: 29864176 [TBL] [Abstract][Full Text] [Related]
13. Extraction of pectin from Premna microphylla turcz leaves and its physicochemical properties. Chen J; Liang RH; Liu W; Luo SJ; Liu CM; Wu SS; Wang ZJ Carbohydr Polym; 2014 Feb; 102():376-84. PubMed ID: 24507294 [TBL] [Abstract][Full Text] [Related]
14. Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide. Nosáľová G; Majee SK; Ghosh K; Raja W; Chatterjee UR; Jureček L; Ray B Int J Biol Macromol; 2014 Aug; 69():151-7. PubMed ID: 24857874 [TBL] [Abstract][Full Text] [Related]
15. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. Zou YF; Li CY; Fu YP; Jiang QX; Peng X; Li LX; Song X; Zhao XH; Li YP; Chen XF; Feng B; Huang C; Jia RY; Ye G; Tang HQ; Yin ZQ J Ethnopharmacol; 2022 Sep; 295():115446. PubMed ID: 35675860 [TBL] [Abstract][Full Text] [Related]
16. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. de Souza A; Hull PA; Gille S; Pauly M Planta; 2014 Nov; 240(5):1123-38. PubMed ID: 25115560 [TBL] [Abstract][Full Text] [Related]
17. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Wang X; Lü X Carbohydr Polym; 2014 Feb; 102():174-84. PubMed ID: 24507270 [TBL] [Abstract][Full Text] [Related]
18. Cotyledon thermal behavior and pectic solubility as related to cooking quality in common beans. Bernal-Lugo I; Parra C; Portilla M; Peña-Valdivia CB; Moreno E Plant Foods Hum Nutr; 1997; 50(2):141-50. PubMed ID: 9201748 [TBL] [Abstract][Full Text] [Related]
19. Deep eutectic solvent (DES)-assisted extraction of pectin from Ficus carica Linn. peel: optimization, partial structure characterization, functional and antioxidant activities. Liu H; Lin J; Hu Y; Lei H; Zhang Q; Tao X; Zhang D; Niu H J Sci Food Agric; 2024 Jul; 104(9):5149-5162. PubMed ID: 38297410 [TBL] [Abstract][Full Text] [Related]
20. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds. Dourado F; Madureira P; Carvalho V; Coelho R; Coimbra MA; Vilanova M; Mota M; Gama FM Carbohydr Res; 2004 Oct; 339(15):2555-66. PubMed ID: 15476717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]