These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30960190)

  • 1. Poly(3-hexylthiophene) Grafting and Molecular Dilution: Study of a Class of Conjugated Graft Copolymers.
    Jarosz T; Kepska K; Ledwon P; Procek M; Domagala W; Stolarczyk A
    Polymers (Basel); 2019 Jan; 11(2):. PubMed ID: 30960190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the Effects of Non-Conjugated Co-Grafts on the Spectroelectrochemical and Photovoltaic Properties of Novel Conjugated Graft Copolymers Based on Poly(3-hexylthiophene).
    Jarosz T; Gebka K; Kepska K; Lapkowski M; Ledwon P; Nitschke P; Stolarczyk A
    Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30960989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ ESR/UV-vis-NIR and ATR-FTIR spectroelectrochemical studies on the p-doping of copolymers of 3-methylthiophene and 3-hexylthiophene.
    Cházaro-Ruiz LF; Kellenberger A; Dunsch L
    J Phys Chem B; 2009 Feb; 113(8):2310-6. PubMed ID: 19191716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties.
    De Girolamo J; Reiss P; Zagorska M; De Bettignies R; Bailly S; Mevellec JY; Lefrant S; Travers JP; Pron A
    Phys Chem Chem Phys; 2008 Jul; 10(27):4027-35. PubMed ID: 18597017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random Poly(3-hexylthiophene-
    Rudenko AE; Khlyabich PP; Thompson BC
    ACS Macro Lett; 2014 Apr; 3(4):387-392. PubMed ID: 35590751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer.
    Lee JU; Jung JW; Emrick T; Russell TP; Jo WH
    Nanotechnology; 2010 Mar; 21(10):105201. PubMed ID: 20154377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural Effects on Solution Self-Assembly of Poly(3-hexylthiophene)-Based Graft Copolymers.
    Kim Y; Kim HJ; Kim JS; Hayward RC; Kim BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2933-2941. PubMed ID: 28026922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of well-defined monofunctionalized poly(3-hexylthiophene)s: toward the synthesis of semiconducting graft copolymers.
    Mougnier SJ; Brochon C; Cloutet E; Fleury G; Cramail H; Hadziioannou G
    Macromol Rapid Commun; 2012 Apr; 33(8):703-9. PubMed ID: 22354723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.
    Fujita H; Michinobu T; Fukuta S; Koganezawa T; Higashihara T
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5484-92. PubMed ID: 26864393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in real time by near-infrared broadband transient absorption.
    Herrmann D; Niesar S; Scharsich C; Köhler A; Stutzmann M; Riedle E
    J Am Chem Soc; 2011 Nov; 133(45):18220-33. PubMed ID: 21942512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Donor-acceptor random regioregular π-conjugated copolymers based on poly(3-hexylthiophene) with unsymmetrical monothienoisoindigo units.
    Uegaki K; Nakabayashi K; Yamamoto SI; Koizumi T; Hayashi S
    RSC Adv; 2020 May; 10(32):19034-19040. PubMed ID: 35518285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a block copolymer containing regioregular poly(3-hexylthiophene) and poly(γ-benzyl-L-glutamate).
    Hundt N; Hoang Q; Nguyen H; Sista P; Hao J; Servello J; Palaniappan K; Alemseghed M; Biewer MC; Stefan MC
    Macromol Rapid Commun; 2011 Feb; 32(3):302-8. PubMed ID: 21433175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of Structure and Dynamics of Photogenerated Charge Carriers in Poly(3-hexylthiophene) Films by Femtosecond Time-Resolved Near-IR Inverse Raman Spectroscopy.
    Takaya T; Enokida I; Furukawa Y; Iwata K
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30691007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features.
    Arrigoni A; Brambilla L; Castiglioni C; Bertarelli C
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Block Copolymers with Poly(3-hexylthiophene) Segments as Compatibilizers in Non-Fullerene Organic Solar Cells.
    Su YA; Maebayashi N; Fujita H; Lin YC; Chen CI; Chen WC; Michinobu T; Chueh CC; Higashihara T
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12083-12092. PubMed ID: 32066235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study on the Impact of Poly(3-hexylthiophene) Chain Length and Other Applied Side-Chains on the NO₂ Sensing Properties of Conducting Graft Copolymers.
    Procek M; Kepska K; Stolarczyk A
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29558448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer.
    Djoumessi Yonkeu AL; Ndipingwi MM; Tovide OO; Ramoroka ME; Ikpo C; Iwuoha EI
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid bulk heterojunction solar cells based on the cooperative interaction of liquid crystals within quantum dots and diblock copolymers.
    Shi Y; Li F; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11692-702. PubMed ID: 24147760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymers of poly(3-thiopheneacetic acid) with poly(3-hexylthiophene) as hole-transporting material for interfacially engineered perovskite solar cell by modulating band positions for higher efficiency.
    Shit A; Chal P; Nandi AK
    Phys Chem Chem Phys; 2018 Jun; 20(23):15890-15900. PubMed ID: 29845983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.