BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30960252)

  • 1. Extruded Polystyrene Foams with Enhanced Insulation and Mechanical Properties by a Benzene-Trisamide-Based Additive.
    Aksit M; Zhao C; Klose B; Kreger K; Schmidt HW; Altstädt V
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Density Polybutylene Terephthalate Foams with Enhanced Compressive Strength via a Reactive-Extrusion Process.
    Aksit M; Gröschel S; Kuhn U; Aksit A; Kreger K; Schmidt HW; Altstädt V
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinked Bisamides as Efficient Supramolecular Foam Cell Nucleating Agents for Low-Density Polystyrene Foams with Homogeneous Microcellular Morphology.
    Klose B; Kremer D; Aksit M; Zwan KPV; Kreger K; Senker J; Altstädt V; Schmidt HW
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Insulating Capacity of Polyurethane Foams through Polyurethane Aerogel Inclusion: From Insulation to Superinsulation.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.
    Yeh JM; Chang KC; Peng CW; Lai MC; Hwang SS; Lin HR; Liou SJ
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6757-64. PubMed ID: 22103077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation.
    Wang P; Aliheidari N; Zhang X; Ameli A
    Carbohydr Polym; 2019 Aug; 218():103-111. PubMed ID: 31221311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols.
    Ivdre A; Abolins A; Volkovs N; Vevere L; Paze A; Makars R; Godina D; Rizikovs J
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow glass microspheres/phenolic syntactic foams with excellent mechanical and thermal insulate performance.
    Wang H; Yan R; Cheng H; Zou M; Wang H; Zheng K
    Front Chem; 2023; 11():1216706. PubMed ID: 37324555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-structure-property relationship of wood particles in aqueous and dry insulative foams.
    Dobrzanski E; Ferreira ES; Tiwary P; Agrawal P; Chen R; Cranston ED
    Carbohydr Polym; 2024 Jul; 335():122077. PubMed ID: 38616097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically robust, thermal insulating sustainable foams fully derived from bamboo fibers through high temperature drying.
    Li X; Zhong T; Xiao Y; Cheng H; Chen H
    Carbohydr Polym; 2024 Jun; 333():121966. PubMed ID: 38494221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Correlation of Mechanical and Thermal Properties of Coal-Based Carbon Foam with the Weight Loss Rate after Oxidation.
    Wang D; Zhuang Q; Li K; Wang Y
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biobased foams for thermal insulation: material selection, processing, modelling, and performance.
    Mort R; Vorst K; Curtzwiler G; Jiang S
    RSC Adv; 2021 Jan; 11(8):4375-4394. PubMed ID: 35424381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Foaming Formulation and Operating Pressure on Thermoregulating Polyurethane Foams.
    Serrano A; Borreguero AM; Catalá J; Rodríguez JF; Carmona M
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Insulating and Moisture-Resilient Foams Based on Upcycled Aramid Nanofibers and Nanocellulose.
    Di A; Schiele C; Hadi SE; Bergström L
    Adv Mater; 2023 Nov; 35(48):e2305195. PubMed ID: 37735848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of lightweight, high-strength, and highly porous ligno-nanocellulosic foam with excellent antioxidant and insulation properties.
    Wang H; Dinesh ; Kim J
    Carbohydr Polym; 2024 Feb; 326():121616. PubMed ID: 38142097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO
    Wang Y; Guo F; Liao X; Li S; Yan Z; Zou F; Peng Q; Li G
    Int J Biol Macromol; 2023 May; 236():123961. PubMed ID: 36898452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and Thermal Properties of Functionally Graded Polyolefin Elastomer Foams.
    Rostami-Tapeh-Esmaeil E; Shojaei S; Rodrigue D
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foamability of Cellulose Palmitate Using Various Physical Blowing Agents in the Extrusion Process.
    Rokkonen T; Willberg-Keyriläinen P; Ropponen J; Malm T
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams.
    Andersons J; Kirpluks M; Cabulis U
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.