These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30960291)
41. Deuteration of C Pantazidis G; Scheffler M; Simonsen FDS; Cassidy A; Jensen PA; Hornekær L; Thrower JD Proc Int Astron Union; 2019 Apr; 15(Suppl 350):458-459. PubMed ID: 33786061 [TBL] [Abstract][Full Text] [Related]
42. Deposition of copper from Cu(i) and Cu(ii) precursors onto HOPG surface: Role of surface defects and choice of a precursor. Duan Y; Teplyakov AV J Chem Phys; 2017 Feb; 146(5):052814. PubMed ID: 28178799 [TBL] [Abstract][Full Text] [Related]
43. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. Bartali R; Otyepka M; Pykal M; Lazar P; Micheli V; Gottardi G; Laidani N ACS Appl Mater Interfaces; 2017 May; 9(20):17517-17525. PubMed ID: 28474883 [TBL] [Abstract][Full Text] [Related]
44. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite. Zhang H; Fu Q; Yao Y; Zhang Z; Ma T; Tan D; Bao X Langmuir; 2008 Oct; 24(19):10874-8. PubMed ID: 18729334 [TBL] [Abstract][Full Text] [Related]
46. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite. Gorodetsky AA; Barton JK Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584 [TBL] [Abstract][Full Text] [Related]
47. Diphenyl viologen on an HOPG electrode surface: less sharp redox wave than dibenzyl viologen. Higashi T; Sagara T Langmuir; 2013 Sep; 29(36):11516-24. PubMed ID: 23937059 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical immobilization of a benzylic film through the reduction of benzyl halide derivatives: deposition onto highly ordered pyrolytic graphite. Hui F; Noël JM; Poizot P; Hapiot P; Simonet J Langmuir; 2011 Apr; 27(8):5119-25. PubMed ID: 21413749 [TBL] [Abstract][Full Text] [Related]
49. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Chen J; Dai Y; Ma Y; Dai X; Ho W; Xie M Nanoscale; 2017 Oct; 9(41):15945-15948. PubMed ID: 29019513 [TBL] [Abstract][Full Text] [Related]
50. Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: Impact on the chemical bonding with silane. Poulon-Quintin A; Ogden E; Large A; Vaudescal M; Labrugère C; Bartala M; Bertrand C Dent Mater; 2021 May; 37(5):832-839. PubMed ID: 33640173 [TBL] [Abstract][Full Text] [Related]
51. Surface Modification and Enhancement of Ferromagnetism in BiFeO Ramazanov S; Sobola D; Orudzhev F; Knápek A; Polčák J; Potoček M; Kaspar P; Dallaev R Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050330 [TBL] [Abstract][Full Text] [Related]
52. Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by "Interferencing" Water. Włoch J; Terzyk AP; Wiśniewski M; Kowalczyk P Langmuir; 2017 Aug; 33(34):8562-8573. PubMed ID: 28771011 [TBL] [Abstract][Full Text] [Related]
53. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives. Tanaka M; Sawaguchi T; Sato Y; Yoshioka K; Niwa O Langmuir; 2011 Jan; 27(1):170-8. PubMed ID: 21117684 [TBL] [Abstract][Full Text] [Related]
54. Formation of Nanocones on Highly Oriented Pyrolytic Graphite by Oxygen Plasma. Vesel A; Eleršič K; Modic M; Junkar I; Mozetič M Materials (Basel); 2014 Mar; 7(3):2014-2029. PubMed ID: 28788553 [TBL] [Abstract][Full Text] [Related]
55. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite. Ryu SW; Yoon J; Moon HS; Shong B; Kim H; Lee HB Nanotechnology; 2017 Mar; 28(11):115301. PubMed ID: 28106007 [TBL] [Abstract][Full Text] [Related]
56. Silane coupling agent for attaching fusion-bonded epoxy to steel. Tchoquessi Diodjo MR; Belec L; Aragon E; Joliff Y; Lanarde L; Perrin FX ACS Appl Mater Interfaces; 2013 Jul; 5(14):6751-61. PubMed ID: 23790122 [TBL] [Abstract][Full Text] [Related]
57. High resolution scanning tunneling microscopy of a 1D coordination polymer with imidazole-based N,N,O ligands on HOPG. Fischer NV; Mitra U; Warnick KG; Dremov V; Stocker M; Wölfle T; Hieringer W; Heinemann FW; Burzlaff N; Görling A; Müller P Chemistry; 2014 Sep; 20(37):11863-9. PubMed ID: 25077463 [TBL] [Abstract][Full Text] [Related]
58. Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Wong AK; Krull UJ Anal Bioanal Chem; 2005 Sep; 383(2):187-200. PubMed ID: 16132125 [TBL] [Abstract][Full Text] [Related]
59. Charge injection barriers at a ribonucleic acid/inorganic material contact determined by photoemission spectroscopy. Dam N; Doran BV; Braunagel JC; Schlaf R J Phys Chem B; 2005 Jan; 109(2):748-56. PubMed ID: 16866437 [TBL] [Abstract][Full Text] [Related]
60. Implementation of Electrochemically Synthesized Silver Nanocrystallites for the Preferential SERS Enhancement of Defect Modes on Thermally Etched Graphite Surfaces. Zoval JV; Biernacki PR; Penner RM Anal Chem; 1996 May; 68(9):1585-92. PubMed ID: 21619124 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]