BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30960304)

  • 1. Modeling of Miniemulsion Polymerization of Styrene with Macro-RAFT Agents to Theoretically Compare Slow Fragmentation, Ideal Exchange and Cross-Termination Cases.
    Devlaminck DJG; Van Steenberge PHM; Reyniers MF; D'hooge DR
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Initiated Reversible Addition-Fragmentation Chain Transfer (RAFT) Miniemulsion Polymerization of Styrene using PPEGMA-Based Macro-RAFT Agent.
    Park M; Kim K; Mohanty AK; Cho HY; Lee H; Kang Y; Seo B; Lee W; Jeon HB; Paik HJ
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000399. PubMed ID: 32902024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailor-made polyfluoroacrylate and its block copolymer by RAFT polymerization in miniemulsion; improved hydrophobicity in the core-shell block copolymer.
    Chakrabarty A; Singha NK
    J Colloid Interface Sci; 2013 Oct; 408():66-74. PubMed ID: 23953650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab-Initio-Based Kinetic Modeling to Understand RAFT Exchange: The Case of 2-Cyano-2-Propyl Dodecyl Trithiocarbonate and Styrene.
    Desmet GB; De Rybel N; Van Steenberge PHM; D'hooge DR; Reyniers MF; Marin GB
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29076596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of reversible addition-fragmentation chain-transfer polymerization mechanism by MALDI-TOF-MS.
    Zhou G; Harruna II
    Anal Chem; 2007 Apr; 79(7):2722-7. PubMed ID: 17313186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Bradford KGE; Petit LM; Whitfield R; Anastasaki A; Barner-Kowollik C; Konkolewicz D
    J Am Chem Soc; 2021 Oct; 143(42):17769-17777. PubMed ID: 34662103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced synthesis of multiblock copolymers
    Antonopoulou MN; Truong NP; Anastasaki A
    Chem Sci; 2024 Mar; 15(13):5019-5026. PubMed ID: 38550686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAFT Polymerization of
    Nguyen MN; Margaillan A; Pham QT; Bressy C
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Molar Mass Distributions Using a Method of Partial Moments: Initiation of RAFT Polymerization.
    Johnson CHJ; Spurling TH; Moad G
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of 4-Vinylbenzaldehyde.
    Sun G; Cheng C; Wooley KL
    Macromolecules; 2007 Feb; 40(4):793-795. PubMed ID: 19066633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Well-Defined High Molecular Weight Polystyrene with High Rates and High Livingness Synthesized via Two-Stage RAFT Emulsion Polymerization.
    Yan K; Gao X; Luo Y
    Macromol Rapid Commun; 2015 Jul; 36(13):1277-82. PubMed ID: 25881928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Experimental Validation of a Dispersity Model for
    Wilding CYP; Knox ST; Bourne RA; Warren NJ
    Macromolecules; 2023 Feb; 56(4):1581-1591. PubMed ID: 36874531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of core-shell polystyrene nanoparticles by surfactant free emulsion polymerization using macro-RAFT agent.
    Yeole N; Hundiwale D; Jana T
    J Colloid Interface Sci; 2011 Feb; 354(2):506-10. PubMed ID: 21145064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization.
    Feldermann A; Coote ML; Stenzel MH; Davis TP; Barner-Kowollik C
    J Am Chem Soc; 2004 Dec; 126(48):15915-23. PubMed ID: 15571417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization.
    Tobita H
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation and Modeling of a Sharp Oxygen Threshold in Aqueous Free Radical and RAFT Polymerization.
    Siqueira JS; Crosley M; Reed WF
    J Phys Chem B; 2022 Dec; 126(51):10933-10947. PubMed ID: 36520675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailor-Made Fluorinated Copolymer/Clay Nanocomposite by Cationic RAFT Assisted Pickering Miniemulsion Polymerization.
    Chakrabarty A; Zhang L; Cavicchi KA; Weiss RA; Singha NK
    Langmuir; 2015 Nov; 31(45):12472-80. PubMed ID: 26492220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Reversible Addition-Fragmentation Transfer Emulsion Styrene Butadiene Rubber (RAFT ESBR) on the Properties of Carbon Black-Filled Compounds.
    Hwang K; Mun H; Kim W
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of pegylated fluorescent nanoparticles by RAFT miniemulsion polymerization using a phase inversion process.
    Grazon C; Rieger J; Méallet-Renault R; Clavier G; Charleux B
    Macromol Rapid Commun; 2011 May; 32(9-10):699-705. PubMed ID: 21491536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.