These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30960387)

  • 1. Effect of Different Pressures of Supercritical Carbon Dioxide on the Microstructure of PAN Fibers during the Hot-Drawing Process.
    Qiao M; Kong H; Ding X; Hu Z; Zhang L; Cao Y; Yu M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Different Pressures on Microstructure and Mechanical Performance of F-III Fibers in Supercritical Carbon Dioxide Fluid.
    Ding X; Kong H; Qiao M; Hu Z; Yu M
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Crystallization Behaviors and Properties of F-III Fibers during Hot Drawing in Supercritical Carbon Dioxide.
    Ding X; Kong H; Qiao M; Hu Z; Yu M
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Changes of Structures and Properties of PAN Fibers during the Cyclic Reaction in Supercritical Carbon Dioxide.
    Qiao M; Kong H; Ding X; Hu Z; Zhang L; Cao Y; Yu M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites.
    Song Z; Hou X; Zhang L; Wu S
    Materials (Basel); 2011 Apr; 4(4):621-632. PubMed ID: 28879944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Polyacrylonitrile Precursor Orientation on the Structures and Properties of Thermally Stabilized Carbon Fiber.
    Wang B; Li C; Cao W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique.
    Wang F; Chang L; Wang L; Gong Y; Guo Y; Shi Q; Quan F
    Int J Biol Macromol; 2022 Jul; 212():412-419. PubMed ID: 35577192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.
    Li X; Qin A; Zhao X; Liu D; Wang H; He C
    Phys Chem Chem Phys; 2015 Sep; 17(34):21856-65. PubMed ID: 26235219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Mechanical Properties of Polyacrylonitrile Precursor Fiber with Dry and Wet Drawing Process.
    Ahn H; Wee JH; Kim YM; Yu WR; Yeo SY
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural Changes of Aramid Fiber Due to Reaction with Toluene 2,4-diisocyanate under Tension in scCO
    Kong H; Xu Q; Yu M
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31266166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanofibers based carbon-carbon composite fibers.
    Hiremath N; Bhat S; Boy R; Evora MC; Naskar AK; Mays J; Bhat G
    Discov Nano; 2023 Dec; 18(1):159. PubMed ID: 38127269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers.
    Chang H; Chien AT; Liu HC; Wang PH; Newcomb BA; Kumar S
    ACS Biomater Sci Eng; 2015 Jul; 1(7):610-616. PubMed ID: 33434977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.
    Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and Structure of In Situ Transformed PAN-Based Carbon Fibers.
    Cao J; Zhao W; Gao S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Influence of Thermal Drawing Parameters on the Microstructure and Thermo-Mechanical Properties of Multimaterial Fibers.
    Richard I; Maurya AK; Shadman S; Masquelier E; Marthey LS; Neels A; Sorin F
    Small; 2022 Jan; 18(4):e2101392. PubMed ID: 34761869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-spun bio-based PLA-co-PET copolyester fibers with tunable properties: Synergistic effects of chemical structure and drawing process.
    Zhang Z; Zhou J; Yu S; Wei L; Hu Z; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():670-678. PubMed ID: 36521703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cold drawing on mechanical properties of biodegradable fibers.
    La Mantia FP; Ceraulo M; Mistretta MC; Morreale M
    J Appl Biomater Funct Mater; 2017 Jan; 15(1):e70-e76. PubMed ID: 27716870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers.
    Zhang H; Quan L; Shi F; Li C; Liu H; Xu L
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers.
    Jiang E; Maghe M; Zohdi N; Amiralian N; Naebe M; Laycock B; Fox BL; Martin DJ; Annamalai PK
    ACS Omega; 2019 Jun; 4(6):9720-9730. PubMed ID: 31460062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Mechanical and Surface Properties of Aramid Fiber by Grafting with 1,4-Dichlorobutane under Supercritical Carbon Dioxide.
    Jia C; Yuan C; Ma Z; Du Y; Liu L; Huang Y
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31744043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.