These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 30960444)
1. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer. Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444 [TBL] [Abstract][Full Text] [Related]
2. A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Li F; Chen C; Tan F; Yue G; Shen L; Zhang W Nanoscale Res Lett; 2014; 9(1):240. PubMed ID: 24936158 [TBL] [Abstract][Full Text] [Related]
3. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent. Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Performance of Nanoporous Titanium Dioxide Solar Cells Using Cadmium Sulfide and Poly(3-hexylthiophene) Co-Sensitizers. Thanihaichelvan M; Kodikara MMPS; Ravirajan P; Velauthapillai D Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965770 [TBL] [Abstract][Full Text] [Related]
5. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM. Pradeep UW; Villani M; Calestani D; Cristofolini L; Iannotta S; Zappettini A; Coppedè N Nanotechnology; 2017 Jan; 28(3):035403. PubMed ID: 27966476 [TBL] [Abstract][Full Text] [Related]
6. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells. Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773 [TBL] [Abstract][Full Text] [Related]
7. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications. Li W; Lee T; Oh SJ; Kagan CR ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. Kumar N; Dutta V J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909 [TBL] [Abstract][Full Text] [Related]
9. Study of buffer layer thickness on bulk heterojunction solar cell. Noh S; Suman CK; Lee D; Kim S; Lee C J Nanosci Nanotechnol; 2010 Oct; 10(10):6815-8. PubMed ID: 21137803 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase. Radbeh R; Parbaile E; Bouclé J; Di Bin C; Moliton A; Coudert V; Rossignol F; Ratier B Nanotechnology; 2010 Jan; 21(3):035201. PubMed ID: 19966408 [TBL] [Abstract][Full Text] [Related]
11. Efficiency Enhancement in Organic Solar Cells by Use of Cobalt Phthalocyanine (CoPc) Thin Films. Rawat SS; Kumar A; Srivastava R; Suman CK J Nanosci Nanotechnol; 2020 Jun; 20(6):3703-3709. PubMed ID: 31748067 [TBL] [Abstract][Full Text] [Related]
12. Effects of Ga- and Al-codoped ZnO buffer layer on the performance of inverted polymer solar cells. Lee SJ; Kim DH; Kang JK; Kim DY; Kim HM; Han YS J Nanosci Nanotechnol; 2013 Dec; 13(12):7839-43. PubMed ID: 24266149 [TBL] [Abstract][Full Text] [Related]
13. The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses. Casalegno M; Kotowski D; Bernardi A; Luzzati S; Po R; Raos G Phys Chem Chem Phys; 2015 Jan; 17(4):2447-56. PubMed ID: 25493298 [TBL] [Abstract][Full Text] [Related]
14. Toward Enhancing Solar Cell Performance: An Effective and "Green" Additive. Tan L; Li P; Zhang Q; Izquierdo R; Chaker M; Ma D ACS Appl Mater Interfaces; 2018 Feb; 10(7):6498-6504. PubMed ID: 29401370 [TBL] [Abstract][Full Text] [Related]
15. Inverted polymer solar cells with an ultrathin lithium fluoride buffer layer. Lee SJ; Jeong S; Kim DH; Kim C; Han YS J Nanosci Nanotechnol; 2012 Apr; 12(4):3205-9. PubMed ID: 22849089 [TBL] [Abstract][Full Text] [Related]
16. Effect of solution-processed niO thin film as a hole transport layer in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction solar cells. Jung J; Oh SH; Yoon DH; Kim HJ J Nanosci Nanotechnol; 2012 Feb; 12(2):1165-9. PubMed ID: 22629913 [TBL] [Abstract][Full Text] [Related]
17. Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells. Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984098 [TBL] [Abstract][Full Text] [Related]
18. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots. Chen C; Li F Nanoscale Res Lett; 2013 Oct; 8(1):453. PubMed ID: 24172258 [TBL] [Abstract][Full Text] [Related]
19. Role of Molecular and Interchain Ordering in the Formation of a δ-Hole-Transporting Layer in Organic Solar Cells. Chandrasekaran N; Li C; Singh S; Kumar A; McNeill CR; Huettner S; Kabra D ACS Appl Mater Interfaces; 2020 Jan; 12(3):3806-3814. PubMed ID: 31840485 [TBL] [Abstract][Full Text] [Related]
20. Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Lee JU; Jung JW; Emrick T; Russell TP; Jo WH Nanotechnology; 2010 Mar; 21(10):105201. PubMed ID: 20154377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]