These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30960543)

  • 21. Morphology and properties of soy protein and polylactide blends.
    Zhang J; Jiang L; Zhu L; Jane JL; Mungara P
    Biomacromolecules; 2006 May; 7(5):1551-61. PubMed ID: 16677038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applications.
    Maqsood M; Seide G
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moisture sorption, transport, and hydrolytic degradation in polylactide.
    Cairncross RA; Becker JG; Ramaswamy S; O'Connor R
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):774-85. PubMed ID: 18563653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration.
    Chor A; Gonçalves RP; Costa AM; Farina M; Ponche A; Sirelli L; Schrodj G; Gree S; Andrade LR; Anselme K; Dias ML
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions.
    Puchalski M; Szparaga G; Biela T; Gutowska A; Sztajnowski S; Krucińska I
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospinning of hexanoyl chitosan/polylactide blends.
    Peesan M; Rujiravanit R; Supaphol P
    J Biomater Sci Polym Ed; 2006; 17(5):547-65. PubMed ID: 16800154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moisture sorption, transport, and hydrolytic degradation in polylactide.
    Cairncross RA; Becker JG; Ramaswamy S; O'Connor R
    Appl Biochem Biotechnol; 2006; 129-132():774-85. PubMed ID: 16915687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Natural Additives on the Composting Properties of Aliphatic Polyesters.
    Latos-Brozio M; Masek A
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32824947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community.
    Liu Y; Zhan Z; Ye H; Lin X; Yan Y; Zhang Y
    RSC Adv; 2019 Mar; 9(18):10386-10394. PubMed ID: 35520905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into polylactide biodegradation from molecular ecological techniques.
    Sangwan P; Wu DY
    Macromol Biosci; 2008 Apr; 8(4):304-15. PubMed ID: 18383571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis.
    Ruggero F; Carretti E; Gori R; Lotti T; Lubello C
    Chemosphere; 2020 May; 246():125770. PubMed ID: 31901665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of ZnO, SiO
    Kosowska K; Szatkowski P
    J Therm Anal Calorim; 2020; 140(4):1769-1778. PubMed ID: 32435152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.
    Ruka DR; Sangwan P; Garvey CJ; Simon GP; Dean KM
    Environ Sci Technol; 2015 Aug; 49(16):9979-86. PubMed ID: 25763925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites.
    Valapa RB; G P; Katiyar V
    Int J Biol Macromol; 2016 Aug; 89():70-80. PubMed ID: 27095433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites.
    Castro-Aguirre E; Auras R; Selke S; Rubino M; Marsh T
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding.
    Tang H; Chen JB; Wang Y; Xu JZ; Hsiao BS; Zhong GJ; Li ZM
    Biomacromolecules; 2012 Nov; 13(11):3858-67. PubMed ID: 23072455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.