These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30960571)

  • 41. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing.
    Song EH; Jeong SH; Park JU; Kim S; Kim HE; Song J
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():866-874. PubMed ID: 28629091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application.
    Chen X; Zhao R; Wang X; Li X; Peng F; Jin Z; Gao X; Yu J; Wang C
    J Biomater Sci Polym Ed; 2017 Feb; 28(2):162-176. PubMed ID: 27848275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier.
    Zhang Q; Liu Y; Chen KC; Zhang G; Shi X; Chen H
    Colloids Surf B Biointerfaces; 2013 Feb; 102():354-60. PubMed ID: 23018023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study of Correlation between Structure and Shape-Memory Effect/Drug-Release Profile of Polyurethane/Hydroxyapatite Composites for Antibacterial Implants.
    Bil M; Jurczyk-Kowalska M; Kopeć K; Heljak M
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyurethane (PU)-derived photoactive and copper-free clickable surface based on perfluorophenyl azide (PFPA) chemistry.
    Li L; Li J; Kulkarni A; Liu S
    J Mater Chem B; 2013 Jan; 1(4):571-582. PubMed ID: 32260829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites.
    Petcharoen K; Sirivat A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():312-23. PubMed ID: 26838855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application.
    Kumari S; Singh BN; Srivastava P
    3 Biotech; 2019 Mar; 9(3):102. PubMed ID: 30800613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-methoxyethylacrylate modified polyurethane membrane and its blood compatibility.
    Tian X; Qiu YR
    Prog Biophys Mol Biol; 2019 Nov; 148():39-46. PubMed ID: 29079209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Albumin immobilized polyurethane and its blood compatibility.
    Ryu G; Han D; Kim Y; Min B
    ASAIO J; 1992; 38(3):M644-8. PubMed ID: 1457940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity.
    Shababdoust A; Ehsani M; Shokrollahi P; Zandi M
    Prog Biomater; 2018 Mar; 7(1):23-33. PubMed ID: 29196898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.
    Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L
    Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation and characterization of bioactive composites and fibers for dental applications.
    Qidwai M; Sheraz MA; Ahmed S; Alkhuraif AA; ur Rehman I
    Dent Mater; 2014 Oct; 30(10):e253-63. PubMed ID: 24954646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyurethane-Cardiolipin Nanoparticle-Modified Decellularized Scaffold-Based Vascular Patches for Tissue Engineering Applications.
    Zhu H; Fu L; He L; Zhang J; Zhang L; Yang L; Li Y; Zhao Y; Wang Y; Mo H; Shen J
    ACS Appl Bio Mater; 2019 Apr; 2(4):1696-1702. PubMed ID: 35026904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration.
    Zahid S; Khalid H; Ikram F; Iqbal H; Samie M; Shahzadi L; Shah AT; Yar M; Chaudhry AA; Awan SJ; Khan AF; Rehman IU
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():438-447. PubMed ID: 31029339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature Effect on the Mechanical Properties of Electrospun PU Nanofibers.
    Zhou J; Cai Q; Liu X; Ding Y; Xu F
    Nanoscale Res Lett; 2018 Nov; 13(1):384. PubMed ID: 30488187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Synthesis and characterization of PEG-segmented polyurethane].
    Luo J; Wang P; Li J; Xie X; Fan C; He C; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):125-8. PubMed ID: 16532826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.