These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication. Rodríguez-Cendal AI; Gómez-Seoane I; de Toro-Santos FJ; Fuentes-Boquete IM; Señarís-Rodríguez J; Díaz-Prado SM Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511432 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold. Jiao H; Song S; Zhao K; Zhang X; Tang Y J Biomater Sci Polym Ed; 2020 Aug; 31(12):1552-1565. PubMed ID: 32403996 [TBL] [Abstract][Full Text] [Related]
4. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
5. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds - a step towards ligament repair applications. Khamplod T; Winterburn JB; Cartmell SH Sci Technol Adv Mater; 2022; 23(1):895-910. PubMed ID: 36570876 [TBL] [Abstract][Full Text] [Related]
6. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Rivera-Briso AL; Aachmann FL; Moreno-Manzano V; Serrano-Aroca Á Int J Biol Macromol; 2020 Jan; 143():1000-1008. PubMed ID: 31734372 [TBL] [Abstract][Full Text] [Related]
7. Poly(3-hydroxybutyrate- Tubio CR; Valle X; Carvalho E; Moreira J; Costa P; Correia DM; Lanceros-Mendez S Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38232003 [TBL] [Abstract][Full Text] [Related]
8. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654 [TBL] [Abstract][Full Text] [Related]
9. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
10. Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. Amaro L; Correia DM; Marques-Almeida T; Martins PM; Pérez L; Vilas JL; Botelho G; Lanceros-Mendez S; Ribeiro C Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042300 [TBL] [Abstract][Full Text] [Related]
11. Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds. Shuai C; Guo W; Gao C; Yang Y; Xu Y; Liu L; Qin T; Sun H; Yang S; Feng P; Wu P Polymers (Basel); 2017 May; 9(5):. PubMed ID: 30970854 [TBL] [Abstract][Full Text] [Related]
12. Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Amaro L; Correia DM; Martins PM; Botelho G; Carabineiro SAC; Ribeiro C; Lanceros-Mendez S Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325963 [TBL] [Abstract][Full Text] [Related]
13. Engineered Highly Porous Polyvinyl Alcohol Hydrogels with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene Nanosheets for Musculoskeletal Tissue Engineering: Morphology, Water Sorption, Thermal, Mechanical, Electrical Properties, and Biocompatibility. Aparicio-Collado JL; Zheng Q; Molina-Mateo J; Torregrosa Cabanilles C; Vidaurre A; Serrano-Aroca Á; Sabater I Serra R Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109950 [TBL] [Abstract][Full Text] [Related]
15. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Jin A; Del Valle LJ; Puiggalí J Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139077 [TBL] [Abstract][Full Text] [Related]
16. Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate- Wang X; Yan H; Shen Y; Tang H; Yi B; Qin C; Zhang Y Tissue Eng Part A; 2021 Jan; 27(1-2):142-152. PubMed ID: 32524903 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of Kökpınar Ö; Altun M Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876 [TBL] [Abstract][Full Text] [Related]
18. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
19. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Li X; Liu KL; Wang M; Wong SY; Tjiu WC; He CB; Goh SH; Li J Acta Biomater; 2009 Jul; 5(6):2002-12. PubMed ID: 19251499 [TBL] [Abstract][Full Text] [Related]
20. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]