These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30960665)

  • 1. One-Pot Synthesis of P(
    Salmeia KA; Flaig F; Rentsch D; Gaan S
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams.
    Przystas A; Jovic M; Salmeia KA; Rentsch D; Ferry L; Mispreuve H; Perler H; Gaan S
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite.
    Wang H; Liu Q; Li H; Zhang H; Yan S
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Polyurethane Foams Reinforced by Functionalized Polyhedral Oligomeric Silsesquioxanes: Structural Characteristics and Evaluation of Thermal/Flammability Properties.
    Hebda E; Bukowczan A; Michałowski S; Pielichowski K
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite.
    Rao WH; Liao W; Wang H; Zhao HB; Wang YZ
    J Hazard Mater; 2018 Oct; 360():651-660. PubMed ID: 30153630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Flame Retardant Flexible Polyurethane Foams Containing DOPO Immobilized Titanium Dioxide Nanoparticles.
    Dong Q; Chen K; Jin X; Sun S; Tian Y; Wang F; Liu P; Yang M
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Isosorbide Incorporation into Flexible Polyurethane Foams: Reversible Urethane Linkages and Antioxidant Activity.
    Shin SR; Liang JY; Ryu H; Song GS; Lee DS
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30959785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel MoS
    Zhi M; Liu Q; Zhao Y; Gao S; Zhang Z; He Y
    ACS Omega; 2020 Feb; 5(6):2734-2746. PubMed ID: 32095697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(III)-Catalyzed Chlorination of Activated Arenes.
    Mostafa MAB; Bowley RM; Racys DT; Henry MC; Sutherland A
    J Org Chem; 2017 Jul; 82(14):7529-7537. PubMed ID: 28661157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions.
    Shi X; Jiang S; Zhu J; Li G; Peng X
    RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intumescent flame-retardant system based on carboxymethyl cellulose for flexible polyurethane foams with outstanding flame retardancy, antibacterial properties, and mechanical properties.
    Li P; Jiang XC; Song WM; Zhang LY; Xu YJ; Liu Y; Zhu P
    Int J Biol Macromol; 2023 Jun; 240():124387. PubMed ID: 37040855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion behaviour and dominant shrinkage mechanism of flexible polyurethane foam in the cone calorimeter test.
    Wang Y; Kang W; Chen C; Zhang X; Yang L; Chen X; Cui G; Zhang Y; Zhang F; Li S
    J Hazard Mater; 2019 Mar; 365():395-404. PubMed ID: 30448552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Composite Materials Made from Rigid/Flexible Polyurethane Foams with Fir Sawdust: Acoustic and Thermal Behavior.
    Tiuc AE; Borlea Mureșan SI; Nemeș O; Vermeșan H; Vasile O; Popa F; Pințoi R
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the Properties of Bio-Polyols Based on White Mustard (
    Borowicz M; Isbrandt M; Paciorek-Sadowska J; Sander P
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide.
    Sałasińska K; Leszczyńska M; Celiński M; Kozikowski P; Kowiorski K; Lipińska L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced dechlorination of chlorobenzene and in situ dry sorption of resultant Cl-compounds by CaO and Na2CO3 sorbent beds incorporated with Fe2O3.
    Matsuda H; Ito T; Kuchar D; Tanahashi N; Watanabe C
    Chemosphere; 2009 Mar; 74(10):1348-53. PubMed ID: 19101013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Flammability and Smoke Emission of Plastic Materials Used in Construction and Transport.
    Borucka M; Mizera K; Przybysz J; Kozikowski P; Gajek A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Synergistic Effect of Ionic Liquid-Modified Expandable Graphite and Intumescent Flame-Retardant on Flame-Retardant Rigid Polyurethane Foams.
    Chen Y; Luo Y; Guo X; Chen L; Jia D
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flame Retardancy Behaviors of Flexible Polyurethane Foam Based on Reactive Dihydroxy P-N-containing Flame Retardants.
    Ding Y; Su Y; Huang J; Wang T; Li MY; Li W
    ACS Omega; 2021 Jun; 6(25):16410-16418. PubMed ID: 34235312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.