These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30960676)

  • 1. Wood-PHA Composites: Mapping Opportunities.
    Vandi LJ; Chan CM; Werker A; Richardson D; Laycock B; Pratt S
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.
    Sommerhuber PF; Welling J; Krause A
    Waste Manag; 2015 Dec; 46():76-85. PubMed ID: 26376122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Wood-Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets.
    Pokhrel G; Gardner DJ; Han Y
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood-plastic composites as promising green-composites for automotive industries!
    Ashori A
    Bioresour Technol; 2008 Jul; 99(11):4661-7. PubMed ID: 18068352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects.
    Ramesh M; Rajeshkumar L; Sasikala G; Balaji D; Saravanakumar A; Bhuvaneswari V; Bhoopathi R
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Future of Polyhydroxyalkanoate Composites with Organic Fillers: A Review of Challenges and Opportunities.
    Thakur A; Musioł M; Duale K; Kowalczuk M
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire Behavior of Wood-Based Composite Materials.
    Renner JS; Mensah RA; Jiang L; Xu Q; Das O; Berto F
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Concise Review of the Components and Properties of Wood-Plastic Composites.
    Mitaľová Z; Mitaľ D; Berladir K
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Mechanical, Thermal and Rheological Properties of Hop, Hemp and Wood Fiber Plastic Composites.
    Talcott S; Uptmor B; McDonald AG
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood.
    Alrubaie MAA; Lopez-Anido RA; Gardner DJ
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the Physico-Mechanical and Weathering Properties of Wood-Plastic Composites Made of Wood Fibers from Discarded Parts of Pomelo Trees and Polypropylene.
    Hung KC; Chang WC; Xu JW; Wu TL; Wu JH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria.
    Kamravamanesh D; Lackner M; Herwig C
    Bioengineering (Basel); 2018 Dec; 5(4):. PubMed ID: 30567391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks.
    Możejko-Ciesielska J; Ray S; Sankhyan S
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment.
    Zhou Y; Stanchev P; Katsou E; Awad S; Fan M
    Waste Manag; 2019 Nov; 99():42-48. PubMed ID: 31472439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications.
    Pryadko A; Surmeneva MA; Surmenev RA
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation.
    Israni N; Venkatachalam P; Gajaraj B; Varalakshmi KN; Shivakumar S
    J Environ Manage; 2020 Feb; 255():109884. PubMed ID: 32063322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production.
    Sindhu R; Madhavan A; Arun KB; Pugazhendhi A; Reshmy R; Awasthi MK; Sirohi R; Tarafdar A; Pandey A; Binod P
    Bioresour Technol; 2021 May; 327():124791. PubMed ID: 33579565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.