BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30960724)

  • 1. Ball-Milled Recycled Lead-Graphite Pencils as Highly Stretchable and Low-Cost Thermal-Interface Materials.
    Liao CA; Kwan YK; Chang TC; Fuh YK
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphite nanoplatelets produced by oxidation and thermal exfoliation of graphite and electrical conductivities of their epoxy composites.
    Raza MA; Westwood A; Brown A; Hondow N; Stirling C
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9259-70. PubMed ID: 23447987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers.
    Tian X; Itkis ME; Haddon RC
    Sci Rep; 2015 Aug; 5():13108. PubMed ID: 26279183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials.
    Zheng S; Xue H; Liu Y; Yu X; Cao Z
    Small; 2024 Apr; 20(16):e2306750. PubMed ID: 38044278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler.
    Lavi A; Ohayon-Lavi A; Leibovitch Y; Hayun S; Ruse E; Regev O
    Glob Chall; 2023 Sep; 7(9):2300053. PubMed ID: 37745830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management.
    Vu MC; Kim IH; Choi WK; Lim CS; Islam MA; Kim SR
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26413-26423. PubMed ID: 32469197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites.
    Boden A; Boerner B; Kusch P; Firkowska I; Reich S
    Nano Lett; 2014 Jun; 14(6):3640-4. PubMed ID: 24839860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution.
    Sun X; Ramesh P; Itkis ME; Bekyarova E; Haddon RC
    J Phys Condens Matter; 2010 Aug; 22(33):334216. PubMed ID: 21386506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices.
    Zhang M; Wang H; Su Z; Tian C; Zhang JT; Wang Y; Yan F; Mai Z; Xing G
    Nanotechnology; 2019 Jun; 30(24):245204. PubMed ID: 30743255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertically Aligned Boron Nitride Nanosheets Films for Superior Electronic Cooling.
    Yang K; Yang X; Liu Z; Li K; Yue Y; Zhang R; Wang F; Shi X; Yuan J; Liu N; Wang G; Wang Z; Xin G
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28536-28545. PubMed ID: 37264810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Graphite Nanoplatelet Size and Dispersion on the Thermal and Mechanical Properties of Epoxy-Based Nanocomposites.
    Agustina E; Goak JC; Lee S; Kim Y; Hong SC; Seo Y; Lee N
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures.
    Feng C; Ni H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19732-8. PubMed ID: 27391206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical, Thermal Transport, and Compressive Properties of Epoxy Composite Filled with Graphitic- and Ceramic-Based Thermally Conductive Nanofillers.
    Samsudin SS; Abdul Majid MS; Mohd Jamir MR; Osman AF; Jaafar M; Alshahrani HA
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-Mimetic Layered Structures.
    Ma T; Zhao Y; Ruan K; Liu X; Zhang J; Guo Y; Yang X; Kong J; Gu J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1677-1686. PubMed ID: 31820630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly(vinyl alcohol)/Hexagonal Boron Nitride Nanohybrid Films.
    Kwon OH; Ha T; Kim DG; Kim BG; Kim YS; Shin TJ; Koh WG; Lim HS; Yoo Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34625-34633. PubMed ID: 30216038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of graphite/MgO-reinforced poly(vinyl chloride) composites by mechanical activation with enhanced thermal properties.
    Li Q; Shen F; Ji J; Zhang Y; Muhammad Y; Huang Z; Hu H; Zhu Y; Qin Y
    RSC Adv; 2019 Jan; 9(4):2116-2124. PubMed ID: 35516122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design.
    Kim W; Kim C; Lee W; Park J; Kim D
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials.
    Shahil KM; Balandin AA
    Nano Lett; 2012 Feb; 12(2):861-7. PubMed ID: 22214526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling.
    Wang ZG; Lv JC; Zheng ZL; Du JG; Dai K; Lei J; Xu L; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25325-25333. PubMed ID: 34009940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.