These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30960812)

  • 1. The Chain Length Distribution of an Ideal Reversible Deactivation Radical Polymerization.
    Harrisson S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization.
    Wang Y; Du J; Huang H
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202318898. PubMed ID: 38284482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities.
    Kreutzer J; Yagci Y
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Molar Mass Distributions Using a Method of Partial Moments: Initiation of RAFT Polymerization.
    Johnson CHJ; Spurling TH; Moad G
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beauty of Explicit Dispersity (
    Wang TT; Zhou YN; Luo ZH; Zhu S
    ACS Macro Lett; 2023 Nov; 12(11):1423-1436. PubMed ID: 37812608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing.
    Bagheri A; Fellows CM; Boyer C
    Adv Sci (Weinh); 2021 Mar; 8(5):2003701. PubMed ID: 33717856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Bradford KGE; Petit LM; Whitfield R; Anastasaki A; Barner-Kowollik C; Konkolewicz D
    J Am Chem Soc; 2021 Oct; 143(42):17769-17777. PubMed ID: 34662103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Addition-Fragmentation Chain-Transfer Polymerization in Supercritical CO
    Versteeg FG; Picchioni F
    Macromol Rapid Commun; 2024 Nov; 45(22):e2400514. PubMed ID: 39259254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Hydrophilic Homo-Polyacrylamides via Cu(0)-Mediated Reversible Deactivation Radical Polymerization.
    Alsubaie FM; Alothman OY; Alshammari BA; Fouad H
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can We Push Rapid Reversible Deactivation Radical Polymerizations toward Immortality?
    Ballard N; Asua JM
    ACS Macro Lett; 2020 Feb; 9(2):190-196. PubMed ID: 35638681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and design of the functional group distribution during statistical copolymerization.
    Van Steenberge PHM; Sedlacek O; Hernández-Ortiz JC; Verbraeken B; Reyniers MF; Hoogenboom R; D'hooge DR
    Nat Commun; 2019 Aug; 10(1):3641. PubMed ID: 31409782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization.
    Alsubaie FM; Alothman OY; Fouad H; Mourad AI
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dl-Methionine-Mediated Reversible Deactivation Radical Polymerization of Styrene and Methyl Methacrylate.
    Lv H; An J; Li F; Zhang Y
    Macromol Rapid Commun; 2023 Jul; 44(14):e2300028. PubMed ID: 37014235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity.
    Shimizu T; Truong NP; Whitfield R; Anastasaki A
    ACS Polym Au; 2021 Dec; 1(3):187-195. PubMed ID: 34901951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Deactivation Radical Polymerization of Monomers Containing Activated Aziridine Groups.
    McLeod DC; Tsarevsky NV
    Macromol Rapid Commun; 2016 Oct; 37(20):1694-1700. PubMed ID: 27548069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme Catalysis for Reversible Deactivation Radical Polymerization.
    Li R; Kong W; An Z
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202033. PubMed ID: 35212121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Strategy for Controlling the Polymerizations of Thiyl Radical Propagation by RAFT Agents.
    Zhang S; Wang Y; Huang H; Cao D
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308524. PubMed ID: 37478164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Monte Carlo Simulation Based Detailed Understanding of the Transfer Processes in Semi-Batch Iodine Transfer Emulsion Polymerizations of Vinylidene Fluoride.
    Brandl F; Drache M; Beuermann S
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation.
    Konkolewicz D; Krys P; Matyjaszewski K
    Acc Chem Res; 2014 Oct; 47(10):3028-36. PubMed ID: 25247603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining kinetic information from the chain-length distribution of polymers produced by RAFT.
    Konkolewicz D; Siauw M; Gray-Weale A; Hawkett BS; Perrier S
    J Phys Chem B; 2009 May; 113(20):7086-94. PubMed ID: 19402692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.