BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30960812)

  • 1. The Chain Length Distribution of an Ideal Reversible Deactivation Radical Polymerization.
    Harrisson S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization.
    Wang Y; Du J; Huang H
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202318898. PubMed ID: 38284482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities.
    Kreutzer J; Yagci Y
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Molar Mass Distributions Using a Method of Partial Moments: Initiation of RAFT Polymerization.
    Johnson CHJ; Spurling TH; Moad G
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beauty of Explicit Dispersity (
    Wang TT; Zhou YN; Luo ZH; Zhu S
    ACS Macro Lett; 2023 Nov; 12(11):1423-1436. PubMed ID: 37812608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing.
    Bagheri A; Fellows CM; Boyer C
    Adv Sci (Weinh); 2021 Mar; 8(5):2003701. PubMed ID: 33717856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Bradford KGE; Petit LM; Whitfield R; Anastasaki A; Barner-Kowollik C; Konkolewicz D
    J Am Chem Soc; 2021 Oct; 143(42):17769-17777. PubMed ID: 34662103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Synthesis of Hydrophilic Homo-Polyacrylamides via Cu(0)-Mediated Reversible Deactivation Radical Polymerization.
    Alsubaie FM; Alothman OY; Alshammari BA; Fouad H
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can We Push Rapid Reversible Deactivation Radical Polymerizations toward Immortality?
    Ballard N; Asua JM
    ACS Macro Lett; 2020 Feb; 9(2):190-196. PubMed ID: 35638681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and design of the functional group distribution during statistical copolymerization.
    Van Steenberge PHM; Sedlacek O; Hernández-Ortiz JC; Verbraeken B; Reyniers MF; Hoogenboom R; D'hooge DR
    Nat Commun; 2019 Aug; 10(1):3641. PubMed ID: 31409782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization.
    Alsubaie FM; Alothman OY; Fouad H; Mourad AI
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dl-Methionine-Mediated Reversible Deactivation Radical Polymerization of Styrene and Methyl Methacrylate.
    Lv H; An J; Li F; Zhang Y
    Macromol Rapid Commun; 2023 Jul; 44(14):e2300028. PubMed ID: 37014235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity.
    Shimizu T; Truong NP; Whitfield R; Anastasaki A
    ACS Polym Au; 2021 Dec; 1(3):187-195. PubMed ID: 34901951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Deactivation Radical Polymerization of Monomers Containing Activated Aziridine Groups.
    McLeod DC; Tsarevsky NV
    Macromol Rapid Commun; 2016 Oct; 37(20):1694-1700. PubMed ID: 27548069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme Catalysis for Reversible Deactivation Radical Polymerization.
    Li R; Kong W; An Z
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202033. PubMed ID: 35212121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Strategy for Controlling the Polymerizations of Thiyl Radical Propagation by RAFT Agents.
    Zhang S; Wang Y; Huang H; Cao D
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308524. PubMed ID: 37478164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Monte Carlo Simulation Based Detailed Understanding of the Transfer Processes in Semi-Batch Iodine Transfer Emulsion Polymerizations of Vinylidene Fluoride.
    Brandl F; Drache M; Beuermann S
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation.
    Konkolewicz D; Krys P; Matyjaszewski K
    Acc Chem Res; 2014 Oct; 47(10):3028-36. PubMed ID: 25247603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining kinetic information from the chain-length distribution of polymers produced by RAFT.
    Konkolewicz D; Siauw M; Gray-Weale A; Hawkett BS; Perrier S
    J Phys Chem B; 2009 May; 113(20):7086-94. PubMed ID: 19402692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Light-Controlled Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization.
    Zhao H; Li H; Tian C; Zhang L; Cheng Z
    Macromol Rapid Commun; 2021 Aug; 42(15):e2100211. PubMed ID: 34028909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.