These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30960851)

  • 1. Hydrodynamic Shear Effects on Grafted and Non-Grafted Collapsed Polymers.
    Schwarzl R; Netz RR
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor.
    Radtke M; Lippok S; Rädler JO; Netz RR
    Eur Phys J E Soft Matter; 2016 Mar; 39(3):32. PubMed ID: 26993993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-flow-induced unfolding of polymeric globules.
    Alexander-Katz A; Schneider MF; Schneider SW; Wixforth A; Netz RR
    Phys Rev Lett; 2006 Sep; 97(13):138101. PubMed ID: 17026077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal Tensile Force and A2 Domain Unfolding of von Willebrand Factor Multimers in Shear Flow.
    Morabito M; Dong C; Wei W; Cheng X; Zhang XF; Oztekin A; Webb E
    Biophys J; 2018 Nov; 115(10):1860-1871. PubMed ID: 30287111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding of collapsed polymers in shear flow: effects of colloid banding structures in confining channels.
    Chen H; Alexander-Katz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032602. PubMed ID: 24730867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Continuum Model for the Unfolding of von Willebrand Factor.
    Zhussupbekov M; Méndez Rojano R; Wu WT; Massoudi M; Antaki JF
    Ann Biomed Eng; 2021 Sep; 49(9):2646-2658. PubMed ID: 34401970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-induced dynamics of polymeric globules at adsorbing homogeneous and inhomogeneous surfaces.
    Radtke M; Radtke M; Netz R
    Eur Phys J E Soft Matter; 2014 Mar; 37(3):20. PubMed ID: 24676864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic effects in driven soft matter.
    Manghi M; Schlagberger X; Kim YW; Netz RR
    Soft Matter; 2006 Jul; 2(8):653-668. PubMed ID: 32680223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual A domain interactions in the force sensing protein von Willebrand factor.
    Posch S; Aponte-Santamaría C; Schwarzl R; Karner A; Radtke M; Gräter F; Obser T; König G; Brehm MA; Gruber HJ; Netz RR; Baldauf C; Schneppenheim R; Tampé R; Hinterdorfer P
    J Struct Biol; 2017 Jan; 197(1):57-64. PubMed ID: 27113902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of polymers in flowing colloidal suspensions.
    Chen H; Alexander-Katz A
    Phys Rev Lett; 2011 Sep; 107(12):128301. PubMed ID: 22026804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres.
    Deng M; Li X; Liang H; Caswell B; Karniadakis GE
    J Fluid Mech; 2012 Nov; 711():. PubMed ID: 24353347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear.
    Languin-Cattoën O; Laborie E; Yurkova DO; Melchionna S; Derreumaux P; Belyaev AV; Sterpone F
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow.
    Huisman B; Hoore M; Gompper G; Fedosov DA
    Med Eng Phys; 2017 Oct; 48():14-22. PubMed ID: 28734872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of collapsed polymers under the simultaneous influence of elongational and shear flows.
    Sing CE; Alexander-Katz A
    J Chem Phys; 2011 Jul; 135(1):014902. PubMed ID: 21744916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Tethered Polymers on Dynamics of Nanoparticles in Unentangled Polymer Melts.
    Ge T; Rubinstein M; Grest GS
    Macromolecules; 2020 Aug; 53(16):6898-6906. PubMed ID: 34366485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a polyelectrolyte in simple shear flow.
    Jayasree K; Manna RK; Banerjee D; Kumar PB
    J Chem Phys; 2013 Dec; 139(22):224902. PubMed ID: 24329088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single flexible and semiflexible polymers at high shear: non-monotonic and non-universal stretching response.
    Sendner C; Netz RR
    Eur Phys J E Soft Matter; 2009 Sep; 30(1):75-81. PubMed ID: 19777277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic stress of grafted polymer chains in shear flow.
    Mees J; O'Connor TC; Pastewka L
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37668251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers.
    Schneider SW; Nuschele S; Wixforth A; Gorzelanny C; Alexander-Katz A; Netz RR; Schneider MF
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7899-903. PubMed ID: 17470810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-regulated nucleation protrusion theory for collapsed polymers.
    Kania S; Oztekin A; Cheng X; Zhang XF; Webb E
    Phys Rev E; 2021 Nov; 104(5-1):054504. PubMed ID: 34942837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.