BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30960855)

  • 41. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polycarboxylate Functionalized Graphene/S Composite Cathodes and Modified Cathode-Facing Side Coated Separators for Advanced Lithium-Sulfur Batteries.
    Kiai MS; Eroglu O; Kizil H
    Nanoscale Res Lett; 2019 Aug; 14(1):265. PubMed ID: 31385055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plane Double-Layer Structure of AC@S Cathode Improves Electrochemical Performance for Lithium-Sulfur Battery.
    Tao Z; Yang Z; Guo Y; Zeng Y; Xiao J
    Front Chem; 2018; 6():447. PubMed ID: 30420948
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and Electrochemical Performance of Microporous Hollow Carbon from Milkweed Pappus as Cathode Material of Lithium-Sulfur Batteries.
    Kim JK; Choi Y; Jeong ED; Lee SJ; Kim HG; Chung JM; Kim JS; Lee SY; Bae JS
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selenium-Doped Sulfurized Polyacrylonitrile Hybrid Cathodes with Ultrahigh Sulfur Content for High-Performance Solid-State Lithium Sulfur Batteries.
    Ma S; Yu Z; Wang L; Zuo P
    Langmuir; 2024 Apr; 40(17):9255-9264. PubMed ID: 38630628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile Synthesis of SiO
    Zhao Y; Liu Z; Zhang Y; Mentbayeva A; Wang X; Maximov MY; Liu B; Bakenov Z; Yin F
    Nanoscale Res Lett; 2017 Dec; 12(1):459. PubMed ID: 28724265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ternary Si-SiO-Al Composite Films as High-Performance Anodes for Lithium-Ion Batteries.
    Cheng Y; Wei K; Yu Z; Fan D; Yan DL; Pan Z; Tian B
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34447-34456. PubMed ID: 34259495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy-Density Improvement in Li-Ion Rechargeable Batteries Based on LiCoO
    Bae KY; Cho SH; Kim BH; Son BD; Yoon WY
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Low-Cost and Scalable Carbon Coated SiO-Based Anode Material for Lithium-Ion Batteries.
    Huang Z; Dang G; Jiang W; Sun Y; Yu M; Zhang Q; Xie J
    ChemistryOpen; 2021 Mar; 10(3):380-386. PubMed ID: 33492771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SiO
    Xiong Y; Xing H; Fan Y; Wei Y; Shang J; Chen Y; Yan J
    RSC Adv; 2021 Feb; 11(14):7801-7807. PubMed ID: 35423327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
    Bao W; Xie X; Xu J; Guo X; Song J; Wu W; Su D; Wang G
    Chemistry; 2017 Sep; 23(51):12613-12619. PubMed ID: 28683155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Freeze-Drying-Assisted ZIF-67 Template-Derived Co@NCS Porous Composite as Sulfur Cathode Host for Improved Li-S Battery Performance: Deconvolution of Diffusive and Capacitive Li
    Archana S; Elumalai P
    Langmuir; 2023 Dec; 39(48):17446-17457. PubMed ID: 37975865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Electrolyte Chemistry and Sulfur Content in Li||Sulfurized Polyacrylonitrile (SPAN) Batteries.
    Yu K; Cai G; Li M; Wu J; Gupta V; Lee DJ; Holoubek J; Chen Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43724-43731. PubMed ID: 37695100
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries.
    Yue J; Huang Y; Liu S; Chen J; Han F; Wang C
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36066-36071. PubMed ID: 32687320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.