BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30960913)

  • 1. Limitations of Viscoelastic Constitutive Models for Carbon-Black Reinforced Rubber in Medium Dynamic Strains and Medium Strain Rates.
    Carleo F; Barbieri E; Whear R; Busfield JJC
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Full Time-Dependent Phenomenology of Filled Rubber for Use in Anti-Vibration Design.
    Carleo F; Plagge J; Whear R; Busfield J; Klüppel M
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32268613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Colloidal Properties of Carbon Black on Static and Dynamic Mechanical Properties of Natural Rubber.
    Kyei-Manu WA; Herd CR; Chowdhury M; Busfield JJC; Tunnicliffe LB
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Local Strain Distribution on the Effective Electrical Resistance of Carbon Black Filled Natural Rubber.
    Harea E; Datta S; Stěnička M; Maloch J; Stoček R
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent.
    Ch'ng SY; Andriyana A; Tee YL; Verron E
    Materials (Basel); 2015 Mar; 8(3):884-898. PubMed ID: 28787977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Prestrain on Payne Effect and Hysteresis Loss of Carbon-Black-Filled Rubber Vulcanizates: Measurements and Modeling.
    Yin B; Jiao X; Wen H; Li Y; Li M
    Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature Dependence of Rubber Hyper-Elasticity Based on Different Constitutive Models and Their Prediction Ability.
    Yao X; Wang Z; Ma L; Miao Z; Su M; Han X; Yang J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review.
    Kumar V; Alam MN; Manikkavel A; Song M; Lee DJ; Park SS
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-Pseudo-Viscoelastic Model and Parameter Identification for Describing Tensile Recovery Stress-Strain Responses of Rubber Components in TBR.
    Pan G; Chen M; Wang Y; Zhang J; Liu L; Zhang L; Li F
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model.
    Fu X; Wang Z; Ma L; Zou Z; Zhang Q; Guan Y
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Structure-Property Relationship between Nanoclay and Cellulose Nanofiber Reinforced Natural Rubber Nanocomposites.
    Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Effect of Carbon Black Filling on the Mechanical Behavior of Rubber Hyper-Elasticity.
    Wang Z; Yao X; Hu F; Ma C; Li X; Miao Z; Song J; Ma L; Li W
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterisation of polyurethane elastomer for biomedical applications.
    Kanyanta V; Ivankovic A
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):51-62. PubMed ID: 19878902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile Mechanical Properties and Dynamic Constitutive Model of Polyurea Elastomer under Different Strain Rates.
    Chen Y; Guo H; Sun M; Lv X
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hyper-Pseudoelastic Model of Cyclic Stress-Softening Effect for Rubber Composites.
    Dong Y; Fu Y; He C; Fang D
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis.
    Le Gal A; Yang X; Klüppel M
    J Chem Phys; 2005 Jul; 123(1):014704. PubMed ID: 16035860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the Viscoelastic Properties of Filler Reinforced Rubber under Physical Aging at Room Temperature.
    Vizcaíno-Vergara M; Kari L; Tunnicliffe LB; Busfield JJC
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of OMMT on the Properties of Vehicle Damping Carbon Black-Natural Rubber Composites.
    Liu W; Lv L; Yang Z; Zheng Y; Wang H
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.