These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
635 related articles for article (PubMed ID: 30960938)
1. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films. Wang X; Jia Y; Liu Z; Miao J Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960938 [TBL] [Abstract][Full Text] [Related]
2. Effect of Micro- and Nano-Lignin on the Thermal, Mechanical, and Antioxidant Properties of Biobased PLA-Lignin Composite Films. Makri SP; Xanthopoulou E; Klonos PA; Grigoropoulos A; Kyritsis A; Tsachouridis K; Anastasiou A; Deligkiozi I; Nikolaidis N; Bikiaris DN Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501671 [TBL] [Abstract][Full Text] [Related]
3. The Influence of Compatibility on the Structure and Properties of PLA/Lignin Biocomposites by Chemical Modification. Guo J; Chen X; Wang J; He Y; Xie H; Zheng Q Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31906231 [TBL] [Abstract][Full Text] [Related]
4. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential. Najahi A; Tarrés Q; Mutjé P; Delgado-Aguilar M; Putaux JL; Boufi S Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616036 [TBL] [Abstract][Full Text] [Related]
5. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
6. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties. Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015 [TBL] [Abstract][Full Text] [Related]
7. Fully biobased poly(lactic acid)/lignin composites compatibilized by epoxidized natural rubber. Ou WX; Weng Y; Zeng JB; Li YD Int J Biol Macromol; 2023 May; 236():123960. PubMed ID: 36921823 [TBL] [Abstract][Full Text] [Related]
8. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils. Wang Q; Ji C; Sun J; Zhu Q; Liu J Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238 [TBL] [Abstract][Full Text] [Related]
9. Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping. Yao L; Hu S; Wang X; Lin M; Zhang C; Chen Y; Yue F; Qi H Carbohydr Polym; 2022 Aug; 290():119480. PubMed ID: 35550769 [TBL] [Abstract][Full Text] [Related]
11. Esterification of Lignin Isolated by Deep Eutectic Solvent Using Fatty Acid Chloride, and Its Composite Film with Poly(lactic acid). Park CW; Han SY; Bandi R; Dadigala R; Lee EA; Kim JK; Cindradewi AW; Kwon GJ; Lee SH Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209918 [TBL] [Abstract][Full Text] [Related]
12. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Dong J; Zeng J; Li P; Li J; Wang B; Xu J; Gao W; Chen K Carbohydr Polym; 2023 Jul; 311():120753. PubMed ID: 37028856 [TBL] [Abstract][Full Text] [Related]
13. Thermal and mechanical properties of polyethylene glycol (PEG)-modified lignin/polylactic acid (PLA) biocomposites. Ju Z; Brosse N; Hoppe S; Wang Z; Ziegler-Devin I; Zhang H; Shu B Int J Biol Macromol; 2024 Mar; 262(Pt 1):129997. PubMed ID: 38340934 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles. Chu Z; Zhao T; Li L; Fan J; Qin Y Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773018 [TBL] [Abstract][Full Text] [Related]
15. Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films. Long S; Zhong L; Lin X; Chang X; Wu F; Wu R; Xie F Int J Biol Macromol; 2021 Mar; 172():82-92. PubMed ID: 33428950 [TBL] [Abstract][Full Text] [Related]
16. Changes in the Dimensions of Lignocellulose Nanofibrils with Different Lignin Contents by Enzymatic Hydrolysis. Jang JH; Hayashi N; Han SY; Park CW; Febrianto F; Lee SH; Kim NH Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992855 [TBL] [Abstract][Full Text] [Related]
17. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
18. Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites. Rasheed M; Jawaid M; Parveez B; Hussain Bhat A; Alamery S Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33535490 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of cellulose/Thespesia lampas microfiber composite films. B A; K OR; Feng H; A VR Int J Biol Macromol; 2019 Apr; 127():153-158. PubMed ID: 30639652 [TBL] [Abstract][Full Text] [Related]
20. Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties. Rasheed M; Jawaid M; Parveez B Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]