These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30961021)

  • 1. A Novel Fault Diagnosis System on Polymer Insulation of Power Transformers Based on 3-stage GA⁻SA⁻SVM OFC Selection and ABC⁻SVM Classifier.
    Huang X; Zhang Y; Liu J; Zheng H; Wang K
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer.
    Tao L; Yang X; Zhou Y; Yang L
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Probabilistic Neural Network Models Combined with Dissolved Gas Analysis for Fault Diagnosis of Oil-Immersed Power Transformers.
    Zhou Y; Tao L; Yang X; Yang L
    ACS Omega; 2021 Jul; 6(28):18084-18098. PubMed ID: 34308042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy reinforcement learning based intelligent classifier for power transformer faults.
    Malik H; Sharma R; Mishra S
    ISA Trans; 2020 Jun; 101():390-398. PubMed ID: 31959374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Precise Interpretation of Oil Transformers via Novel Combined Techniques Based on DGA and Partial Discharge Sensors.
    Ward SA; El-Faraskoury A; Badawi M; Ibrahim SA; Mahmoud K; Lehtonen M; Darwish MMF
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for oil-based transformer fault identification in electrical secondary distribution networks.
    Mbembati H; Bakiri H
    Heliyon; 2024 Mar; 10(5):e26336. PubMed ID: 38434289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moisture Prediction of Transformer Oil-Immersed Polymer Insulation by Applying a Support Vector Machine Combined with a Genetic Algorithm.
    Zhang Y; Li J; Fan X; Liu J; Zhang H
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32708631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review.
    Bustamante S; Manana M; Arroyo A; Castro P; Laso A; Martinez R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis.
    Suwarno ; Sutikno H; Prasojo RA; Abu-Siada A
    Heliyon; 2024 Feb; 10(4):e25975. PubMed ID: 38379965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.
    Illias HA; Zhao Liang W
    PLoS One; 2018; 13(1):e0191366. PubMed ID: 29370230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Fault Diagnosis Method for a Power Transformer Based on Multi-Scale Approximate Entropy and Optimized Convolutional Networks.
    Shang H; Liu Z; Wei Y; Zhang S
    Entropy (Basel); 2024 Feb; 26(3):. PubMed ID: 38539698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired PHM Model for Diagnostics of Faults in Power Transformers Using Dissolved Gas-in-Oil Data.
    Dong H; Yang X; Li A; Xie Z; Zuo Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.
    Illias HA; Chai XR; Abu Bakar AH; Mokhlis H
    PLoS One; 2015; 10(6):e0129363. PubMed ID: 26103634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformer fault diagnosis method based on TLR-ADASYN balanced dataset.
    Guan S; Yang H; Wu T
    Sci Rep; 2023 Dec; 13(1):23010. PubMed ID: 38155169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning.
    Mao W; Wei B; Xu X; Chen L; Wu T; Peng Z; Ren C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].
    Zhang YX; Cheng ZF; Xu ZP; Bai J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):10-3. PubMed ID: 25993810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on fault diagnosis of dissolved oxygen sensor based on GA-SVM.
    Yang P; Li Z; Yu Y; Shi J; Sun M
    Math Biosci Eng; 2020 Dec; 18(1):386-399. PubMed ID: 33525098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Breast Cancer Diagnosis Scheme With Intelligent Feature and Parameter Selections.
    Punitha S; Stephan T; Gandomi AH
    Comput Methods Programs Biomed; 2022 Feb; 214():106432. PubMed ID: 34844767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fault diagnosis method for oil-immersed transformers integrated digital twin model.
    Yao H; Zhang X; Guo Q; Miao Y; Guan S
    Sci Rep; 2024 Sep; 14(1):20355. PubMed ID: 39223198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on line loss analysis and intelligent diagnosis of abnormal causes in distribution networks: artificial intelligence based method.
    Liao Y; En W; Li B; Zhu M; Li B; Li Z; Gu Z
    PeerJ Comput Sci; 2023; 9():e1753. PubMed ID: 38192464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.