These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30961029)

  • 1. Experimental Study of Thermal Behavior of Insulation Material Rigid Polyurethane in Parallel, Symmetric, and Adjacent Building Façade Constructions.
    Ma X; Tu R; Cheng X; Zhu S; Ma J; Fang T
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutions of gas temperature inside fire compartment and external facade flame height with a casement window.
    Sun X; Hu L; Yang Y; Ren F; Fang X
    J Hazard Mater; 2020 Jan; 381():120913. PubMed ID: 31374375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fire behaviour of modern façade materials - Understanding the Grenfell Tower fire.
    McKenna ST; Jones N; Peck G; Dickens K; Pawelec W; Oradei S; Harris S; Stec AA; Hull TR
    J Hazard Mater; 2019 Apr; 368():115-123. PubMed ID: 30669035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and Kinetic Characteristics of Combustion of Discrete Polymethyl Methacrylate Plates with Different Spacings in Concave Building Facades.
    An W; Peng L; Cai M; Hu K; Li S; Wang T
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33466550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels.
    Wi S; Yang S; Yun BY; Kang Y; Kim S
    Environ Pollut; 2022 Nov; 312():120067. PubMed ID: 36067974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample width and thickness effects on upward flame spread over PMMA surface.
    Jiang L; He JJ; Sun JH
    J Hazard Mater; 2018 Jan; 342():114-120. PubMed ID: 28826053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fire Phenomena of Rigid Polyurethane Foams.
    Günther M; Lorenzetti A; Schartel B
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings.
    Wi S; Yang S; Berardi U; Kim S
    Environ Int; 2019 Sep; 130():104900. PubMed ID: 31280051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pool size and spacing on burning rate and flame height of two square heptane pool fires.
    Wan H; Gao Z; Ji J; Zhang Y; Li K; Wang L
    J Hazard Mater; 2019 May; 369():116-124. PubMed ID: 30776594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Coupled Three-Dimensional Simulation of Downward Flame Spread over Combustible Material.
    Snegirev A; Kuznetsov E; Korobeinichev O; Shmakov A; Paletsky A; Shvartsberg V; Trubachev S
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluidized bed combustion fly ash as filler in composite polyurethane materials.
    Kuźnia M; Magiera A; Pielichowska K; Ziąbka M; Benko A; Szatkowski P; Jerzak W
    Waste Manag; 2019 Jun; 92():115-123. PubMed ID: 31160020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane heat preservation materials: The significant sources of organophosphorus flame retardants.
    Wang Y; Yang Y; Zhang Y; Tan F; Li Q; Zhao H; Xie Q; Chen J
    Chemosphere; 2019 Jul; 227():409-415. PubMed ID: 31003125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of environmental impact on the formaldehyde emission and flame-retardant performance of thermal insulation materials.
    Wi S; Park JH; Kim YU; Kim S
    J Hazard Mater; 2021 Jan; 402():123463. PubMed ID: 32702617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density Effect on Flame Retardancy, Thermal Degradation, and Combustibility of Rigid Polyurethane Foam Modified by Expandable Graphite or Ammonium Polyphosphate.
    Yang H; Liu H; Jiang Y; Chen M; Wan C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30979071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weathering of Roofing Insulation Materials under Multi-Field Coupling Conditions.
    Zhou S; Ding Y; Wang Z; Dong J; She A; Wei Y; Li R
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31615085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green buildings model: Impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector.
    Alsuhaibani AM; Refat MS; Qaisrani SA; Jamil F; Abbas Z; Zehra A; Baluch K; Kim JG; Mubeen M
    Heliyon; 2023 Mar; 9(3):e14451. PubMed ID: 36950602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.
    He H; Zhang Q; Tu R; Zhao L; Liu J; Zhang Y
    J Hazard Mater; 2016 Dec; 320():628-634. PubMed ID: 27501876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.
    Zhang T; Zhou X; Yang L
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.