These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30961163)
1. Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips. Díaz Lantada A; Pfleging W; Besser H; Guttmann M; Wissmann M; Plewa K; Smyrek P; Piotter V; García-Ruíz JP Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961163 [TBL] [Abstract][Full Text] [Related]
2. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
3. Micro Injection Molding of Thin Cavities Using Stereolithography for Mold Fabrication. Surace R; Basile V; Bellantone V; Modica F; Fassi I Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199552 [TBL] [Abstract][Full Text] [Related]
4. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Hengsbach S; Lantada AD Biomed Microdevices; 2014 Aug; 16(4):617-27. PubMed ID: 24781883 [TBL] [Abstract][Full Text] [Related]
5. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
7. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. Mi S; Du Z; Xu Y; Sun W J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609 [TBL] [Abstract][Full Text] [Related]
8. Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process. Wang T; Chen J; Zhou T; Song L Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424202 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Stereolithography Printed Soft Tooling for Micro Injection Molding. Dempsey D; McDonald S; Masato D; Barry C Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32872383 [TBL] [Abstract][Full Text] [Related]
10. Surgical Planning of Sacral Nerve Stimulation Procedure in Presence of Sacral Anomalies by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques. Rubio-Pérez I; Díaz Lantada A Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32150891 [TBL] [Abstract][Full Text] [Related]
11. Efficient Development of Integrated Lab-On-A-Chip Systems Featuring Operational Robustness and Manufacturability. Ducrée J Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31861126 [TBL] [Abstract][Full Text] [Related]
12. Facilitating implementation of organs-on-chips by open platform technology. Vollertsen AR; Vivas A; van Meer B; van den Berg A; Odijk M; van der Meer AD Biomicrofluidics; 2021 Sep; 15(5):051301. PubMed ID: 34659603 [TBL] [Abstract][Full Text] [Related]
13. Barriers-on-chips: Measurement of barrier function of tissues in organs-on-chips. Arık YB; van der Helm MW; Odijk M; Segerink LI; Passier R; van den Berg A; van der Meer AD Biomicrofluidics; 2018 Jul; 12(4):042218. PubMed ID: 30018697 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of thermoplastics chips through lamination based techniques. Miserere S; Mottet G; Taniga V; Descroix S; Viovy JL; Malaquin L Lab Chip; 2012 Apr; 12(10):1849-56. PubMed ID: 22487893 [TBL] [Abstract][Full Text] [Related]
15. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. Low LA; Tagle DA Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques. Lopa S; Piraino F; Kemp RJ; Di Caro C; Lovati AB; Di Giancamillo A; Moroni L; Peretti GM; Rasponi M; Moretti M Biotechnol Bioeng; 2015 Jul; 112(7):1457-71. PubMed ID: 25678107 [TBL] [Abstract][Full Text] [Related]