These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30961163)

  • 21. Rapid Prototyping of Plastic Lab-on-a-Chip by Femtosecond Laser Micromachining and Removable Insert Microinjection Molding.
    Martínez Vázquez R; Trotta G; Volpe A; Bernava G; Basile V; Paturzo M; Ferraro P; Ancona A; Fassi I; Osellame R
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.
    Lee H; Cho DW
    Lab Chip; 2016 Jul; 16(14):2618-25. PubMed ID: 27302471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip.
    Jang Y; Jung J; Oh J
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cost-effective micromilling platform for rapid prototyping of microdevices.
    Yen DP; Ando Y; Shen K
    Technology (Singap World Sci); 2016 Dec; 4(4):234-239. PubMed ID: 28317005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How multi-organ microdevices can help foster drug development.
    Esch MB; Smith AS; Prot JM; Oleaga C; Hickman JJ; Shuler ML
    Adv Drug Deliv Rev; 2014 Apr; 69-70():158-69. PubMed ID: 24412641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits.
    Pitingolo G; Taly V; Nastruzzi C
    Biomicrofluidics; 2019 Mar; 13(2):024106. PubMed ID: 31040886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introducing an automated high content confocal imaging approach for Organs-on-Chips.
    Peel S; Corrigan AM; Ehrhardt B; Jang KJ; Caetano-Pinto P; Boeckeler M; Rubins JE; Kodella K; Petropolis DB; Ronxhi J; Kulkarni G; Foster AJ; Williams D; Hamilton GA; Ewart L
    Lab Chip; 2019 Jan; 19(3):410-421. PubMed ID: 30663729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration concepts for multi-organ chips: how to maintain flexibility?!
    Rogal J; Probst C; Loskill P
    Future Sci OA; 2017 Jun; 3(2):FSO180. PubMed ID: 28670472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developing organs-on-chips for biomedical applications.
    Sun L; Chen H; Xu D; Liu R; Zhao Y
    Smart Med; 2024 Jun; 3(2):e20240009. PubMed ID: 39188702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Micro-Structured Polymer by Micro Injection Molding Based on Precise Micro-Ground Mold Core.
    Lu Y; Chen F; Wu X; Zhou C; Lou Y; Li L
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30995828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.
    Li X; He J; Zhang W; Jiang N; Li D
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser processing for bio-microfluidics applications (part II).
    Khan Malek CG
    Anal Bioanal Chem; 2006 Aug; 385(8):1362-9. PubMed ID: 16773302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.