These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30961291)

  • 1. Fluorescent Amorphous Distyrylnaphthalene-Based Polymers: Synthesis, Characterization and Thin-Film Nanomolar Sensing of Nitroaromatics in Water.
    Garay RO; Schvval AB; Almassio MF; Del Rosso PG; Romagnoli MJ; Montani RS
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
    Venkatramaiah N; Kumar S; Patil S
    Chemistry; 2012 Nov; 18(46):14745-51. PubMed ID: 23015532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Diffusion Driven Ultrafast Detection of ppm-Level Nitroaromatic Pollutants in Aqueous Media Using a Hydrophilic Fluorescent Paper Sensor.
    Lu W; Zhang J; Huang Y; Théato P; Huang Q; Chen T
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23884-23893. PubMed ID: 28650607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics.
    Kumar V; Maiti B; Chini MK; De P; Satapathi S
    Sci Rep; 2019 May; 9(1):7269. PubMed ID: 31086230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.
    Huang W; Smarsly E; Han J; Bender M; Seehafer K; Wacker I; Schröder RR; Bunz UH
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3068-3074. PubMed ID: 28051292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response.
    Chen M; Chu R; Kistemaker JCM; Burn PL; Gentle IR; Shaw PE
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56386-56396. PubMed ID: 37982219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives.
    Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON
    Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene.
    Venkatramaiah N; Pereira CF; Mendes RF; Paz FA; Tomé JP
    Anal Chem; 2015 Apr; 87(8):4515-22. PubMed ID: 25810105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled discrete molecules for sensing nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chemistry; 2015 Apr; 21(18):6656-66. PubMed ID: 25694365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic.
    Niu Q; Gao K; Wu W
    Carbohydr Polym; 2014 Sep; 110():47-52. PubMed ID: 24906727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.
    Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z
    Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Receptor free" inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states.
    Tanwar AS; Patidar S; Ahirwar S; Dehingia S; Iyer PK
    Analyst; 2019 Jan; 144(2):669-676. PubMed ID: 30511061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CdS QDs/N-methylpolypyrrole hybrids as fluorescent probe for ultrasensitive and selective detection of picric acid.
    Abbasi F; Akbarinejad A; Alizadeh N
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():230-235. PubMed ID: 30903871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explosives sensing by using electron-rich supramolecular polymers: role of intermolecular hydrogen bonding in significant enhancement of sensitivity.
    Gole B; Song W; Lackinger M; Mukherjee PS
    Chemistry; 2014 Oct; 20(42):13662-80. PubMed ID: 25187022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles.
    Sohn H; Sailor MJ; Magde D; Trogler WC
    J Am Chem Soc; 2003 Apr; 125(13):3821-30. PubMed ID: 12656615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics.
    Zhang S; Lü F; Gao L; Ding L; Fang Y
    Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent Carbon Nitride Nanoparticles for Picric Acid Sensing.
    Patir K
    J Fluoresc; 2024 Jun; ():. PubMed ID: 38874826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions.
    Zhang S; Ding L; Lü F; Liu T; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives.
    Nawaz MAH; Meng L; Zhou H; Ren J; Shahzad SA; Hayat A; Yu C
    Anal Methods; 2021 Feb; 13(6):825-831. PubMed ID: 33502411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.