These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30961318)

  • 21. Freezing and collapse of flexible polymers on regular lattices in three dimensions.
    Vogel T; Bachmann M; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061803. PubMed ID: 18233861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helical conformations of semiflexible polymers confined between two concentric cylinders.
    Zhang D; Yang Z; Wen X; Xiang Z; He L; Ran S; Zhang L
    J Phys Chem B; 2011 Dec; 115(49):14333-40. PubMed ID: 22011331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation studies of ring polymers at athermal and theta conditions.
    Fuereder I; Zifferer G
    J Chem Phys; 2011 Nov; 135(18):184906. PubMed ID: 22088080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The study of unfoldable self-avoiding walks - Application to protein structure prediction software.
    Guyeux C; Nicod JM; Philippe L; Bahi JM
    J Bioinform Comput Biol; 2015 Aug; 13(4):1550009. PubMed ID: 25669327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation.
    Li Y; Lin ST; Goddard WA
    J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles.
    Huang A; Hsu HP; Bhattacharya A; Binder K
    J Chem Phys; 2015 Dec; 143(24):243102. PubMed ID: 26723587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-dependent structural behavior of self-avoiding walks on Sierpinski carpets.
    Fritsche M; Roman HE; Porto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061101. PubMed ID: 18233808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trapping in self-avoiding walks with nearest-neighbor attraction.
    Hooper W; Klotz AR
    Phys Rev E; 2020 Sep; 102(3-1):032132. PubMed ID: 33076037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase transitions in solvent-dependent polymer adsorption in three dimensions.
    Bradly CJ; Owczarek AL; Prellberg T
    Phys Rev E; 2019 Jun; 99(6-1):062113. PubMed ID: 31330636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
    Bedini A; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011123. PubMed ID: 23005384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks.
    Granzotti CR; Martinez AS; da Silva MA
    Phys Rev E; 2016 May; 93(5):052116. PubMed ID: 27300839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exact Enumeration Approach to Estimate the Theta Temperature of Interacting Self-Avoiding Walks on the Simple Cubic Lattice.
    Huang SS; Hsieh YH; Chen CN
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escape transition of a polymer chain from a nanotube: how to avoid spurious results by use of the force-biased pruned-enriched Rosenbluth algorithm.
    Hsu HP; Binder K; Klushin LI; Skvortsov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041803. PubMed ID: 18999448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifractal behavior of linear polymers in disordered media.
    Ordemann A; Porto M; Roman HE; Havlin S; Bunde A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6858-65. PubMed ID: 11088378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Algorithmic generation of freely jointed hard sphere chains and properties of their inertial tensors.
    Wang W; Yu YB
    J Biomol Struct Dyn; 2004 Jun; 21(6):805-12. PubMed ID: 15107002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A modified gambler's ruin model of polyethylene chains in the amorphous region.
    Duan ZH; Howard LN
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10007-11. PubMed ID: 11607704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of a single polymer chain on a surface: effects of the potential range.
    Klushin LI; Polotsky AA; Hsu HP; Markelov DA; Binder K; Skvortsov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022604. PubMed ID: 23496541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.