These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3096154)

  • 1. Effects of lung volume and O2 and CO2 content on cutaneous gas exchange in frogs.
    Malvin GM; Hlastala MP
    Am J Physiol; 1986 Nov; 251(5 Pt 2):R941-6. PubMed ID: 3096154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cutaneous gas exchange by environmental O2 and CO2 in the frog.
    Malvin GM; Hlastala MP
    Respir Physiol; 1986 Jul; 65(1):99-111. PubMed ID: 3092297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of environmental O2 on blood flow and diffusing capacity in amphibian skin.
    Malvin GM; Hlastala MP
    Respir Physiol; 1989 May; 76(2):229-41. PubMed ID: 2787520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian.
    Burggren WW; Vitalis TZ
    J Exp Biol; 2005 Jan; 208(Pt 1):105-12. PubMed ID: 15601882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional variation and control of cutaneous gas exchange in bullfrogs.
    Talbot CR
    Respir Physiol; 1992 Sep; 89(3):261-72. PubMed ID: 1410840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing pulmonary and cutaneous arterial blood flow in the toad, Bufo marinus.
    West NH; Burggren WW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):R884-94. PubMed ID: 6437253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of capillary red cell density on gas conductance of frog skin.
    Malvin GM; Wood SC
    J Appl Physiol (1985); 1992 Jul; 73(1):224-33. PubMed ID: 1506374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Active' regulation of cutaneous gas exchange by capillary recruitment in amphibians: experimental evidence and a revised model for skin respiration.
    Burggren W; Moalli R
    Respir Physiol; 1984 Mar; 55(3):379-92. PubMed ID: 6429804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulmonary and cutaneous O₂gas exchange: a student laboratory exercise in the frog.
    Tattersall GJ; Currie S; LeBlanc DM
    Adv Physiol Educ; 2013 Mar; 37(1):97-105. PubMed ID: 23471257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs.
    Sipinková I; Hahn G; Hillebrecht A; Meyer M; Piiper J
    Respir Physiol; 1990; 80(2-3):171-9. PubMed ID: 2120751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prolonged lung inflation or deflation on pulmonary stretch receptor discharge in the alligator (Alligator mississippiensis).
    Marschand RE; Wilson JL; Burleson ML; Crossley DA; Hedrick MS
    Respir Physiol Neurobiol; 2014 Aug; 200():25-32. PubMed ID: 24874556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilation and partitioning of oxygen uptake in the frog Rana pipiens: effects of hypoxia and activity.
    Pinder AW; Burggren WW
    J Exp Biol; 1986 Nov; 126():453-68. PubMed ID: 3492588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary and cutaneous oxygen uptake and oxygen consumption of isolated skin in the frog, Rana pipiens.
    Vitalis TZ
    Respir Physiol; 1990 Sep; 81(3):391-9. PubMed ID: 2259795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Continuous monitoring of spontaneous postoperative respiration. 3. The effect of amiphenazole on cutaneous oxygen and carbon dioxide partial pressure following gynecologic surgery under halothane anesthesia].
    Lehmann KA; Asoklis S; Grond S; Schroeder B
    Anaesthesist; 1993 Apr; 42(4):227-31. PubMed ID: 8488994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflex interactions between aerial and aquatic gas exchange organs in larval bullfrogs.
    West NH; Burggren WW
    Am J Physiol; 1983 Jun; 244(6):R770-7. PubMed ID: 6602557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular and respiratory effects of inspired oxygen fraction in halothane-anesthetized horses.
    Cuvelliez SG; Eicker SW; McLauchlan C; Brunson DB
    Am J Vet Res; 1990 Aug; 51(8):1226-31. PubMed ID: 2201230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventilatory responses to lung inflation and arterial CO2 in halothane-anesthetized dogs.
    Mitchell GS; Selby BD
    J Appl Physiol (1985); 1988 Apr; 64(4):1433-8. PubMed ID: 3132447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiovascular effects of hyperbaric oxygen with and without addition of carbon dioxide.
    Bergo GW; Tyssebotn I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):264-75. PubMed ID: 10483795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High inspired oxygen concentrations increase intrapulmonary shunt in anaesthetized horses.
    Marntell S; Nyman G; Hedenstierna G
    Vet Anaesth Analg; 2005 Nov; 32(6):338-47. PubMed ID: 16297043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phylogeny of gas exchange systems].
    Jürgens KD; Gros G
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2002 Apr; 37(4):185-98. PubMed ID: 11967744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.