BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30961566)

  • 1. 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo.
    Cao J; Wong MK; Zhao Z; Yan H
    BMC Bioinformatics; 2019 Apr; 20(1):176. PubMed ID: 30961566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.
    Azuma Y; Onami S
    BMC Bioinformatics; 2017 Jun; 18(1):307. PubMed ID: 28629355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation.
    Cao J; Guan G; Ho VWS; Wong MK; Chan LY; Tang C; Zhao Z; Yan H
    Nat Commun; 2020 Dec; 11(1):6254. PubMed ID: 33288755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic classification-based method for segmentation of nuclei in 3D images of early embryos.
    Gul-Mohammed J; Arganda-Carreras I; Andrey P; Galy V; Boudier T
    BMC Bioinformatics; 2014 Jan; 15():9. PubMed ID: 24423252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images.
    Chen L; Chan LL; Zhao Z; Yan H
    BMC Bioinformatics; 2013 Nov; 14():328. PubMed ID: 24252066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms.
    Kaltdorf KV; Schulze K; Helmprobst F; Kollmannsberger P; Dandekar T; Stigloher C
    PLoS Comput Biol; 2017 Jan; 13(1):e1005317. PubMed ID: 28056033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASSET: a robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos.
    Blanchoud S; Budirahardja Y; Naef F; Gönczy P
    Dev Dyn; 2010 Dec; 239(12):3285-96. PubMed ID: 21089077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation, tracking, and sub-cellular feature extraction in 3D time-lapse images.
    Jiang J; Khan A; Shailja S; Belteton SA; Goebel M; Szymanski DB; Manjunath BS
    Sci Rep; 2023 Mar; 13(1):3483. PubMed ID: 36859457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C. elegans Embryonic Morphogenesis.
    Vuong-Brender TT; Yang X; Labouesse M
    Curr Top Dev Biol; 2016; 116():597-616. PubMed ID: 26970644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo.
    Heid PJ; Voss E; Soll DR
    Dev Biol; 2002 May; 245(2):329-47. PubMed ID: 11977985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved method for visualizing cells revealed dynamic morphological changes of ventral neuroblasts during ventral cleft closure of Caenorhabditis elegans.
    Liu Z; Nukazuka A; Takagi S
    Dev Growth Differ; 2007 Jan; 49(1):49-59. PubMed ID: 17227344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation and recognition of C. elegans whole-body cells.
    Li Y; Lai C; Wang M; Wu J; Li Y; Peng H; Qu L
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38775410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images.
    Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O
    BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division.
    Begasse ML; Hyman AA
    Results Probl Cell Differ; 2011; 53():109-33. PubMed ID: 21630143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computable early Caenorhabditis elegans embryo with a phase field model.
    Kuang X; Guan G; Wong MK; Chan LY; Zhao Z; Tang C; Zhang L
    PLoS Comput Biol; 2022 Jan; 18(1):e1009755. PubMed ID: 35030161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation and classification of two-channel C. elegans nucleus-labeled fluorescence images.
    Zhao M; An J; Li H; Zhang J; Li ST; Li XM; Dong MQ; Mao H; Tao L
    BMC Bioinformatics; 2017 Sep; 18(1):412. PubMed ID: 28915791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of mitotic spindle dynamics in Caenorhabditis elegans embryos.
    Toya M; Iida Y; Sugimoto A
    Methods Cell Biol; 2010; 97():359-72. PubMed ID: 20719280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Embryonic Image Segmentation and Registration Based on Shape Index and Ellipsoid-Fitting Method.
    Yang S; Han X; Chen Y
    J Comput Biol; 2019 Feb; 26(2):128-142. PubMed ID: 30526025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.