BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 30961594)

  • 1. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Ren G; Dong Y
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):124. PubMed ID: 32646412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guideline-informed reinforcement learning for mechanical ventilation in critical care.
    den Hengst F; Otten M; Elbers P; van Harmelen F; François-Lavet V; Hoogendoorn M
    Artif Intell Med; 2024 Jan; 147():102742. PubMed ID: 38184349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV.
    Yu C; Dong Y; Liu J; Ren G
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):60. PubMed ID: 30961606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
    Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M
    J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning decision-making tool for extubation in Intensive Care Unit patients.
    Fabregat A; Magret M; Ferré JA; Vernet A; Guasch N; Rodríguez A; Gómez J; Bodí M
    Comput Methods Programs Biomed; 2021 Mar; 200():105869. PubMed ID: 33250280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sedation Regimen on Weaning from Mechanical Ventilation in the Intensive Care Unit.
    Nunes SL; Forsberg S; Blomqvist H; Berggren L; Sörberg M; Sarapohja T; Wickerts CJ
    Clin Drug Investig; 2018 Jun; 38(6):535-543. PubMed ID: 29502195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role responsibilities in mechanical ventilation and weaning in pediatric intensive care units: a national survey.
    Blackwood B; Junk C; Lyons JD; McAuley DF; Rose L
    Am J Crit Care; 2013 May; 22(3):189-97. PubMed ID: 23635928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol-directed sedation versus non-protocol-directed sedation to reduce duration of mechanical ventilation in mechanically ventilated intensive care patients.
    Aitken LM; Bucknall T; Kent B; Mitchell M; Burmeister E; Keogh SJ
    Cochrane Database Syst Rev; 2015 Jan; 1():CD009771. PubMed ID: 25562750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-Specific Sedation Management via Deep Reinforcement Learning.
    Eghbali N; Alhanai T; Ghassemi MM
    Front Digit Health; 2021; 3():608893. PubMed ID: 34713090
    [No Abstract]   [Full Text] [Related]  

  • 14. Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
    Ji CX; Oberst M; Kanjilal S; Sontag D
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():305-314. PubMed ID: 34457145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.
    Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J
    Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards more efficient and robust evaluation of sepsis treatment with deep reinforcement learning.
    Yu C; Huang Q
    BMC Med Inform Decis Mak; 2023 Mar; 23(1):43. PubMed ID: 36859257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of prevention and control of delirium in ventilated patients by simulating blockage of circadian rhythm with sedative in intensive care unit].
    Li J; Dong C; Zhang H; Zhang H; Song R; Yang Z; Feng F; Qi Y; Yang J
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2016 Jan; 28(1):50-6. PubMed ID: 26805535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does Reinforcement Learning Improve Outcomes for Critically Ill Patients? A Systematic Review and Level-of-Readiness Assessment.
    Otten M; Jagesar AR; Dam TA; Biesheuvel LA; den Hengst F; Ziesemer KA; Thoral PJ; de Grooth HJ; Girbes ARJ; François-Lavet V; Hoogendoorn M; Elbers PWG
    Crit Care Med; 2024 Feb; 52(2):e79-e88. PubMed ID: 37938042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial.
    Randolph AG; Wypij D; Venkataraman ST; Hanson JH; Gedeit RG; Meert KL; Luckett PM; Forbes P; Lilley M; Thompson J; Cheifetz IM; Hibberd P; Wetzel R; Cox PN; Arnold JH;
    JAMA; 2002 Nov; 288(20):2561-8. PubMed ID: 12444863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.