These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30961594)
1. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. Yu C; Liu J; Zhao H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594 [TBL] [Abstract][Full Text] [Related]
2. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. Yu C; Ren G; Dong Y BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):124. PubMed ID: 32646412 [TBL] [Abstract][Full Text] [Related]
3. Guideline-informed reinforcement learning for mechanical ventilation in critical care. den Hengst F; Otten M; Elbers P; van Harmelen F; François-Lavet V; Hoogendoorn M Artif Intell Med; 2024 Jan; 147():102742. PubMed ID: 38184349 [TBL] [Abstract][Full Text] [Related]
4. Reinforcement learning for intensive care medicine: actionable clinical insights from novel approaches to reward shaping and off-policy model evaluation. Roggeveen LF; Hassouni AE; de Grooth HJ; Girbes ARJ; Hoogendoorn M; Elbers PWG; Intensive Care Med Exp; 2024 Mar; 12(1):32. PubMed ID: 38526681 [TBL] [Abstract][Full Text] [Related]
5. Reinforcement Learning to Optimize Ventilator Settings for Patients on Invasive Mechanical Ventilation: Retrospective Study. Liu S; Xu Q; Xu Z; Liu Z; Sun X; Xie G; Feng M; See KC J Med Internet Res; 2024 Oct; 26():e44494. PubMed ID: 39219230 [TBL] [Abstract][Full Text] [Related]
6. Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV. Yu C; Dong Y; Liu J; Ren G BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):60. PubMed ID: 30961606 [TBL] [Abstract][Full Text] [Related]
7. Forward and inverse reinforcement learning sharing network weights and hyperparameters. Uchibe E; Doya K Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548 [TBL] [Abstract][Full Text] [Related]
8. Continuous action deep reinforcement learning for propofol dosing during general anesthesia. Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516 [TBL] [Abstract][Full Text] [Related]
9. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction. Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434 [TBL] [Abstract][Full Text] [Related]
10. Patient-Specific Sedation Management via Deep Reinforcement Learning. Eghbali N; Alhanai T; Ghassemi MM Front Digit Health; 2021; 3():608893. PubMed ID: 34713090 [No Abstract] [Full Text] [Related]
11. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review. Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670 [TBL] [Abstract][Full Text] [Related]
12. Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies. Ji CX; Oberst M; Kanjilal S; Sontag D AMIA Jt Summits Transl Sci Proc; 2021; 2021():305-314. PubMed ID: 34457145 [TBL] [Abstract][Full Text] [Related]
13. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers. Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning decision-making tool for extubation in Intensive Care Unit patients. Fabregat A; Magret M; Ferré JA; Vernet A; Guasch N; Rodríguez A; Gómez J; Bodí M Comput Methods Programs Biomed; 2021 Mar; 200():105869. PubMed ID: 33250280 [TBL] [Abstract][Full Text] [Related]
15. Effect of Sedation Regimen on Weaning from Mechanical Ventilation in the Intensive Care Unit. Nunes SL; Forsberg S; Blomqvist H; Berggren L; Sörberg M; Sarapohja T; Wickerts CJ Clin Drug Investig; 2018 Jun; 38(6):535-543. PubMed ID: 29502195 [TBL] [Abstract][Full Text] [Related]
16. Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care. Shirali A; Schubert A; Alaa A IEEE J Biomed Health Inform; 2024 Oct; 28(10):6268-6279. PubMed ID: 38885106 [TBL] [Abstract][Full Text] [Related]
17. Does Reinforcement Learning Improve Outcomes for Critically Ill Patients? A Systematic Review and Level-of-Readiness Assessment. Otten M; Jagesar AR; Dam TA; Biesheuvel LA; den Hengst F; Ziesemer KA; Thoral PJ; de Grooth HJ; Girbes ARJ; François-Lavet V; Hoogendoorn M; Elbers PWG Crit Care Med; 2024 Feb; 52(2):e79-e88. PubMed ID: 37938042 [TBL] [Abstract][Full Text] [Related]
18. Decisional responsibility for mechanical ventilation and weaning: an international survey. Rose L; Blackwood B; Egerod I; Haugdahl HS; Hofhuis J; Isfort M; Kydonaki K; Schubert M; Sperlinga R; Spronk P; Storli S; McAuley DF; Schultz MJ Crit Care; 2011; 15(6):R295. PubMed ID: 22169094 [TBL] [Abstract][Full Text] [Related]
19. Towards more efficient and robust evaluation of sepsis treatment with deep reinforcement learning. Yu C; Huang Q BMC Med Inform Decis Mak; 2023 Mar; 23(1):43. PubMed ID: 36859257 [TBL] [Abstract][Full Text] [Related]
20. Protocol-directed sedation versus non-protocol-directed sedation to reduce duration of mechanical ventilation in mechanically ventilated intensive care patients. Aitken LM; Bucknall T; Kent B; Mitchell M; Burmeister E; Keogh SJ Cochrane Database Syst Rev; 2015 Jan; 1():CD009771. PubMed ID: 25562750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]