BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30961599)

  • 1. Relation path feature embedding based convolutional neural network method for drug discovery.
    Zhao D; Wang J; Sang S; Lin H; Wen J; Yang C
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):59. PubMed ID: 30961599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SemaTyP: a knowledge graph based literature mining method for drug discovery.
    Sang S; Yang Z; Wang L; Liu X; Lin H; Wang J
    BMC Bioinformatics; 2018 May; 19(1):193. PubMed ID: 29843590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Scalable Embedding Based Neural Network Method for Discovering Knowledge From Biomedical Literature.
    Sang S; Liu X; Chen X; Zhao D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1294-1301. PubMed ID: 32750871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit.
    Xuan P; Zhao L; Zhang T; Ye Y; Zhang Y
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31349692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual CNN for Relation Extraction with Knowledge-Based Attention and Word Embeddings.
    Li J; Huang G; Chen J; Wang Y
    Comput Intell Neurosci; 2019; 2019():6789520. PubMed ID: 31396271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of drug-protein interaction based on dual channel neural networks with attention mechanism.
    Tan D; Jiang H; Li H; Xie Y; Su Y
    Brief Funct Genomics; 2024 May; 23(3):286-294. PubMed ID: 37642213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge Guided Attention and Graph Convolutional Networks for Chemical-Disease Relation Extraction.
    Sun Y; Wang J; Lin H; Zhang Y; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):489-499. PubMed ID: 34962873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional Neural Network Knowledge Graph Link Prediction Model Based on Relational Memory.
    Shi M; Zhao J; Wu D
    Comput Intell Neurosci; 2023; 2023():3909697. PubMed ID: 37323853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting biomedical relationships using the knowledge and graph embedding cascade model.
    Liang X; Li D; Song M; Madden A; Ding Y; Bu Y
    PLoS One; 2019; 14(6):e0218264. PubMed ID: 31194807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting compound-protein interaction using hierarchical graph convolutional networks.
    Bui-Thi D; Rivière E; Meysman P; Laukens K
    PLoS One; 2022; 17(7):e0258628. PubMed ID: 35862351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks.
    Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.