BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30961729)

  • 1. Sperm Movement Control Utilizing Surface Charged Magnetic Nanoparticles.
    Chang M; Chang YJ; Wang TY; Yu Q
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5713-5722. PubMed ID: 30961729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.
    Jeon S; Subbiah R; Bonaedy T; Van S; Park K; Yun K
    J Cell Physiol; 2018 Feb; 233(2):1168-1178. PubMed ID: 28464242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics.
    Toropova Y; Korolev D; Istomina M; Shulmeyster G; Petukhov A; Mishanin V; Gorshkov A; Podyacheva E; Gareev K; Bagrov A; Demidov O
    Int J Nanomedicine; 2021; 16():5651-5664. PubMed ID: 34447247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
    Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O
    Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-Induced Magnetic Imaging of Tumors Targeted by Biofunctional Magnetic Nanoparticles.
    Huang KW; Chieh JJ; Yeh CK; Liao SH; Lee YY; Hsiao PY; Wei WC; Yang HC; Horng HE
    ACS Nano; 2017 Mar; 11(3):3030-3037. PubMed ID: 28276684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells.
    Alieva IB; Kireev I; Garanina AS; Alyabyeva N; Ruyter A; Strelkova OS; Zhironkina OA; Cherepaninets VD; Majouga AG; Davydov VA; Khabashesku VN; Agafonov V; Uzbekov RE
    J Nanobiotechnology; 2016 Aug; 14(1):67. PubMed ID: 27576904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.
    Ge S; Agbakpe M; Wu Z; Kuang L; Zhang W; Wang X
    Environ Sci Technol; 2015 Jan; 49(2):1190-6. PubMed ID: 25486124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting.
    Zahn D; Klein K; Radon P; Berkov D; Erokhin S; Nagel E; Eichhorn M; Wiekhorst F; Dutz S
    Nanotechnology; 2020 Dec; 31(49):495101. PubMed ID: 32946423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.
    Marcus M; Karni M; Baranes K; Levy I; Alon N; Margel S; Shefi O
    J Nanobiotechnology; 2016 May; 14(1):37. PubMed ID: 27179923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tale of Two Magnets: An Advanced Magnetic Targeting System.
    Zhou Z; Shen Z; Chen X
    ACS Nano; 2020 Jan; 14(1):7-11. PubMed ID: 31869210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer Hydrogel Sheet-Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval.
    Kim DI; Lee H; Kwon SH; Sung YJ; Song WK; Park S
    Adv Healthc Mater; 2020 Jul; 9(13):e2000118. PubMed ID: 32431072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field.
    Liu H; Li Y; Liu G
    Med Phys; 2022 Jan; 49(1):521-531. PubMed ID: 34822174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-depletion of acrosome-damaged donkey sperm by using lectin peanut agglutinin (PNA)-magnetic nanoparticles.
    Yousef MS; López-Lorente AI; Diaz-Jimenez M; Consuegra C; Dorado J; Pereira B; Ortiz I; Cárdenas S; Hidalgo M
    Theriogenology; 2020 Jul; 151():103-111. PubMed ID: 32325322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA.
    Yu L; Liu J; Wu K; Klein T; Jiang Y; Wang JP
    Sci Rep; 2014 Nov; 4():7216. PubMed ID: 25427561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction energy and detachment of magnetic nanoparticles-algae.
    Xu Y; Wang X; Fu Y; Hu F; Qian G; Liu Q; Sun Y
    Environ Technol; 2020 Aug; 41(20):2618-2624. PubMed ID: 30694112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells.
    Manju S; Sreenivasan K
    Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect.
    Leong SS; Ahmad Z; Lim J
    Soft Matter; 2015 Sep; 11(35):6968-80. PubMed ID: 26234726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications.
    Angrisani N; Foth F; Kietzmann M; Schumacher S; Angrisani GL; Christel A; Behrens P; Reifenrath J
    J Nanobiotechnology; 2013 Oct; 11():34. PubMed ID: 24112871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.
    Radović M; Calatayud MP; Goya GF; Ibarra MR; Antić B; Spasojević V; Nikolić N; Janković D; Mirković M; Vranješ-Đurić S
    J Biomed Mater Res A; 2015 Jan; 103(1):126-34. PubMed ID: 24616186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.