These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30961739)
1. Faster and Cleaner Method to Mass Produce Nano HMX/TNT Energetic Particles for Significantly Reduced Mechanical Sensitivity. Liu Y; An CW; Luo J; Wang JY J Nanosci Nanotechnol; 2019 Sep; 19(9):5783-5789. PubMed ID: 30961739 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT J Mol Model; 2019 Jan; 25(1):10. PubMed ID: 30603804 [TBL] [Abstract][Full Text] [Related]
3. Preparation and Characterization of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method. Hu Y; Yuan S; Li X; Liu M; Sun F; Yang Y; Hao G; Jiang W ACS Omega; 2020 Jul; 5(28):17761-17766. PubMed ID: 32724868 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Spherical HMX/DMF Solvates, Spherical HMX Particles, and HMX@NTO Composites: A Way to Reduce the Sensitivity of HMX. Zhao H; Gu G; Shen J; Zhao X; Wang J; Lan G ACS Omega; 2023 Apr; 8(15):14041-14046. PubMed ID: 37091399 [TBL] [Abstract][Full Text] [Related]
5. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Song X; Wang Y; An C; Guo X; Li F J Hazard Mater; 2008 Nov; 159(2-3):222-9. PubMed ID: 18353546 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. Wang Y; Song X; Song D; Liang L; An C; Wang J J Hazard Mater; 2016 Jul; 312():73-83. PubMed ID: 27016668 [TBL] [Abstract][Full Text] [Related]
7. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties. Lin C; Huang B; Gong F; Yang Z; Liu J; Zhang J; Zeng C; Li Y; Li J; Guo S ACS Appl Mater Interfaces; 2019 Aug; 11(33):30341-30351. PubMed ID: 31356045 [TBL] [Abstract][Full Text] [Related]
8. Dissolution of microscale energetic residues in saturated porous media: visualization and quantification at the pore-scale by spectral confocal microscopy. Wang C; Lazouskaya V; Fuller ME; Caplan JL; Schaefer CE; Jin Y Environ Sci Technol; 2011 Oct; 45(19):8352-8. PubMed ID: 21861475 [TBL] [Abstract][Full Text] [Related]
9. Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol. Monteil-Rivera F; Deschamps S; Ampleman G; Thiboutot S; Hawari J J Hazard Mater; 2010 Feb; 174(1-3):281-8. PubMed ID: 19815337 [TBL] [Abstract][Full Text] [Related]
10. Engineering the Morphology and Particle Size of High Energetic Compounds Using Drop-by-Drop and Drop-to-Drop Solvent-Antisolvent Interaction Methods. Kumar R; Soni P; Siril PF ACS Omega; 2019 Mar; 4(3):5424-5433. PubMed ID: 31459707 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity. Huang B; Hao X; Zhang H; Yang Z; Ma Z; Li H; Nie F; Huang H Ultrason Sonochem; 2014 Jul; 21(4):1349-57. PubMed ID: 24613468 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers-PVTNP- Jin B; Shen J; Gou X; Peng R; Chu S; Dong H Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979113 [TBL] [Abstract][Full Text] [Related]
13. Biofunctionalization of HMX with Peptides via Polydopamine Crosslinking for Assembling an HMX@Al@CuO Nanoenergetic Composite. Jin M; Song Z; Liu W; Wang G; Xian M Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368266 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and Effects of Two Novel Rare-Earth Energetic Complexes on Thermal Decomposition of Cyclotetramethylene Tetranitramine (HMX). Cao X; Wei Z; Song J; Zhang H; Qu Y; Xie F Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580476 [TBL] [Abstract][Full Text] [Related]
15. Litchi-like Core-Shell HMX@HPW@PDA Microparticles for Polymer-Bonded Energetic Composites with Low Sensitivity and High Mechanical Properties. Lin C; Zeng C; Wen Y; Gong F; He G; Li Y; Yang Z; Ding L; Li J; Guo S ACS Appl Mater Interfaces; 2020 Jan; 12(3):4002-4013. PubMed ID: 31874021 [TBL] [Abstract][Full Text] [Related]
16. A promising TNT alternative 3,3'-bi(1,2,4-oxadiazole)-5,5'-diylbis(methylene)dinitrate (BOM): thermal behaviors and eutectic characteristics. Yang X; Zhou J; Xing X; Huang Y; Yan Z; Xue Q; Wang X; Wang B RSC Adv; 2020 Jul; 10(44):26425-26432. PubMed ID: 35519764 [TBL] [Abstract][Full Text] [Related]
17. Designing and property prediction of a novel three-component CL-20/HMX/TNAD energetic cocrystal explosive by MD method. Hang GY; Wang T; Lu C; Wang JT; Yu WL; Shen HM J Mol Model; 2023 Feb; 29(3):78. PubMed ID: 36847881 [TBL] [Abstract][Full Text] [Related]
18. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils. Sharma P; Mayes MA; Tang G Chemosphere; 2013 Aug; 92(8):993-1000. PubMed ID: 23602657 [TBL] [Abstract][Full Text] [Related]
19. Sequential biodegradation of TNT, RDX and HMX in a mixture. Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165 [TBL] [Abstract][Full Text] [Related]
20. 3D Electron-Rich ZIF-67 Coordination Compounds Based on 2-Methylimidazole: Synthesis, Characterization and Effect on Thermal Decomposition of RDX, HMX, CL-20, DAP-4 and AP. Yang X; Tan B; Wang B; Yao L; Li X; Zhao D; Li W; Cao L; Huang Y; Wang X Molecules; 2022 Nov; 27(23):. PubMed ID: 36500463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]