These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 3096193)

  • 1. The autotrophic pathway of acetate synthesis in acetogenic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1986; 40():415-50. PubMed ID: 3096193
    [No Abstract]   [Full Text] [Related]  

  • 2. [Carbonic acid in the metabolism of bacteria of the genus Clostridium].
    Khor'kova GA; Azova LG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (12):87-92. PubMed ID: 237586
    [No Abstract]   [Full Text] [Related]  

  • 3. Total synthesis of acetate from CO2 by heterotrophic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1969; 23():515-38. PubMed ID: 4899080
    [No Abstract]   [Full Text] [Related]  

  • 4. A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen.
    Wood HG; Ragsdale SW; Pezacka E
    Biochem Int; 1986 Mar; 12(3):421-40. PubMed ID: 3011003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-carbon chemistry of acetogenic and methanogenic bacteria.
    Zeikus JG; Kerby R; Krzycki JA
    Science; 1985 Mar; 227(4691):1167-73. PubMed ID: 3919443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate.
    Pezacka E; Wood HG
    Arch Microbiol; 1984 Jan; 137(1):63-9. PubMed ID: 6424623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum.
    Poston JM; Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4209-16. PubMed ID: 5924642
    [No Abstract]   [Full Text] [Related]  

  • 8. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria.
    Schulman M; Parker D; Ljungdahl LG; Wood HG
    J Bacteriol; 1972 Feb; 109(2):633-44. PubMed ID: 5058447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conversion of carbon dioxide to acetate. II. The role of alpha-ketoisovalerate in the synthesis of acetate by Clostridium thermoaceticum.
    Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4217-23. PubMed ID: 5924643
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Fröstl JM; Seifritz C; Drake HL
    J Bacteriol; 1996 Aug; 178(15):4597-603. PubMed ID: 8755890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of corrinoids in the total synthesis of acetate from CO-2 by Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Fed Proc; 1966; 25(6):1642-8. PubMed ID: 5333065
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici.
    Waber LJ; Wood HG
    J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of yeast extract on growth and metabolism of H2-utilizing acetogenic bacteria from the human colon.
    Leclerc M; Elfoul-Bensaid L; Bernalier A
    Curr Microbiol; 1998 Sep; 37(3):166-71. PubMed ID: 9688815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats.
    Braun M; Schoberth S; Gottschalk G
    Arch Microbiol; 1979 Mar; 120(3):201-4. PubMed ID: 571704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?
    Drake HL; Daniel SL; Küsel K; Matthies C; Kuhner C; Braus-Stromeyer S
    Biofactors; 1997; 6(1):13-24. PubMed ID: 9233536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Biochemistry; 1965 Dec; 4(12):2771-80. PubMed ID: 5880685
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of carbon dioxide on the growth of Clostridium butyricum and the biosynthesis of acetate].
    Azova LG; Khor'kova GA; Oleĭnik EK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (7):90-4. PubMed ID: 1174593
    [No Abstract]   [Full Text] [Related]  

  • 18. The conversion of carbon dioxide to acetate. 3. Demonstration of ferredoxin in the system converting Co-14Ch3-cobalamin to acetate.
    Poston JM; Stadtman ER
    Biochem Biophys Res Commun; 1967 Mar; 26(5):550-5. PubMed ID: 6049351
    [No Abstract]   [Full Text] [Related]  

  • 19. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth.
    Jin S; Jeon Y; Jeon MS; Shin J; Song Y; Kang S; Bae J; Cho S; Lee JK; Kim DR; Cho BK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Old acetogens, new light.
    Drake HL; Gössner AS; Daniel SL
    Ann N Y Acad Sci; 2008 Mar; 1125():100-28. PubMed ID: 18378590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.