BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30962274)

  • 1. Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
    Morimoto RI
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30962274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.
    van Oosten-Hawle P; Morimoto RI
    Genes Dev; 2014 Jul; 28(14):1533-43. PubMed ID: 25030693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal
    Lazaro-Pena MI; Cornwell AB; Diaz-Balzac CA; Das R; Ward ZC; Macoretta N; Thakar J; Samuelson AV
    Elife; 2023 Jun; 12():. PubMed ID: 37338980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
    van Oosten-Hawle P; Morimoto RI
    J Exp Biol; 2014 Jan; 217(Pt 1):129-36. PubMed ID: 24353212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome.
    Liang V; Ullrich M; Lam H; Chew YL; Banister S; Song X; Zaw T; Kassiou M; Götz J; Nicholas HR
    Cell Mol Life Sci; 2014 Sep; 71(17):3339-61. PubMed ID: 24458371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat shock response: systems biology of proteotoxic stress in aging and disease.
    Morimoto RI
    Cold Spring Harb Symp Quant Biol; 2011; 76():91-9. PubMed ID: 22371371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging.
    Labbadia J; Brielmann RM; Neto MF; Lin YF; Haynes CM; Morimoto RI
    Cell Rep; 2017 Nov; 21(6):1481-1494. PubMed ID: 29117555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mitochondrial Stress-Specific Form of HSF1 Protects against Age-Related Proteostasis Collapse.
    Williams R; Laskovs M; Williams RI; Mahadevan A; Labbadia J
    Dev Cell; 2020 Sep; 54(6):758-772.e5. PubMed ID: 32735771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Morris S; Snyder A; Westerheide SD
    Cell Stress Chaperones; 2018 Jan; 23(1):65-75. PubMed ID: 28674941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis.
    Brandvold KR; Morimoto RI
    J Mol Biol; 2015 Sep; 427(18):2931-47. PubMed ID: 26003923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.
    Medkour Y; Svistkova V; Titorenko VI
    Int Rev Cell Mol Biol; 2016; 321():259-97. PubMed ID: 26811290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.
    Ben-Zvi A; Miller EA; Morimoto RI
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14914-9. PubMed ID: 19706382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.
    Kumsta C; Hansen M
    Autophagy; 2017 Jun; 13(6):1076-1077. PubMed ID: 28333578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of organismal proteostasis by transcellular chaperone signaling.
    van Oosten-Hawle P; Porter RS; Morimoto RI
    Cell; 2013 Jun; 153(6):1366-78. PubMed ID: 23746847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network.
    Lazaro-Pena MI; Ward ZC; Yang S; Strohm A; Merrill AK; Soto CA; Samuelson AV
    Front Aging; 2022; 3():861686. PubMed ID: 35874276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetic screening strategy identifies novel regulators of the proteostasis network.
    Silva MC; Fox S; Beam M; Thakkar H; Amaral MD; Morimoto RI
    PLoS Genet; 2011 Dec; 7(12):e1002438. PubMed ID: 22242008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryo integrity regulates maternal proteostasis and stress resilience.
    Sala AJ; Bott LC; Brielmann RM; Morimoto RI
    Genes Dev; 2020 May; 34(9-10):678-687. PubMed ID: 32217667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.