These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30962447)

  • 21. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.
    Ryan DE; Taussig D; Steinfeld I; Phadnis SM; Lunstad BD; Singh M; Vuong X; Okochi KD; McCaffrey R; Olesiak M; Roy S; Yung CW; Curry B; Sampson JR; Bruhn L; Dellinger DJ
    Nucleic Acids Res; 2018 Jan; 46(2):792-803. PubMed ID: 29216382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems.
    Cromwell CR; Hubbard BP
    Methods Mol Biol; 2021; 2162():215-232. PubMed ID: 32926385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications.
    Labuhn M; Adams FF; Ng M; Knoess S; Schambach A; Charpentier EM; Schwarzer A; Mateo JL; Klusmann JH; Heckl D
    Nucleic Acids Res; 2018 Feb; 46(3):1375-1385. PubMed ID: 29267886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing.
    Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av
    J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.
    Khromov AV; Gushchin VA; Timerbaev VI; Kalinina NO; Taliansky ME; Makarov VV
    Dokl Biochem Biophys; 2018 Mar; 479(1):90-94. PubMed ID: 29779105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR RNA Array-Guided Multisite Cleavage for Gene Disruption by Cas9 and Cpf1.
    Wang D; Ma D; Han J; Kong L; Li LY; Xi Z
    Chembiochem; 2018 Oct; 19(20):2195-2205. PubMed ID: 30088313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9.
    George JT; Azhar M; Aich M; Sinha D; Ambi UB; Maiti S; Chakraborty D; Srivatsan SG
    J Am Chem Soc; 2020 Aug; 142(32):13954-13965. PubMed ID: 32658470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments.
    Heigwer F; Boutros M
    Methods Mol Biol; 2021; 2162():3-22. PubMed ID: 32926374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA
    He X; Wang Y; Yang F; Wang B; Xie H; Gu L; Zhao T; Liu X; Zhang D; Ren Q; Liu X; Liu Y; Gao C; Gu F
    J Biol Chem; 2019 Jun; 294(23):9308-9315. PubMed ID: 31010827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.