These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 30962623)

  • 21. SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks.
    Dibaeinia P; Sinha S
    Cell Syst; 2020 Sep; 11(3):252-271.e11. PubMed ID: 32871105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell chromatin accessibility reveals principles of regulatory variation.
    Buenrostro JD; Wu B; Litzenburger UM; Ruff D; Gonzales ML; Snyder MP; Chang HY; Greenleaf WJ
    Nature; 2015 Jul; 523(7561):486-90. PubMed ID: 26083756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Gene Regulatory Networks from Single-Cell Expression Data.
    Li S; Yan H; Lee J
    Methods Mol Biol; 2021; 2328():153-170. PubMed ID: 34251624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches.
    Czimmerer Z; Horvath A; Daniel B; Nagy G; Cuaranta-Monroy I; Kiss M; Kolostyak Z; Poliska S; Steiner L; Giannakis N; Varga T; Nagy L
    Biochim Biophys Acta Gene Regul Mech; 2018 Jan; 1861(1):14-28. PubMed ID: 29133016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain.
    Davie K; Janssens J; Koldere D; De Waegeneer M; Pech U; Kreft Ł; Aibar S; Makhzami S; Christiaens V; Bravo González-Blas C; Poovathingal S; Hulselmans G; Spanier KI; Moerman T; Vanspauwen B; Geurs S; Voet T; Lammertyn J; Thienpont B; Liu S; Konstantinides N; Fiers M; Verstreken P; Aerts S
    Cell; 2018 Aug; 174(4):982-998.e20. PubMed ID: 29909982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation.
    Schauder DM; Shen J; Chen Y; Kasmani MY; Kudek MR; Burns R; Cui W
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33859041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington's epigenetic landscape.
    Guo J; Zheng J
    Bioinformatics; 2017 Jul; 33(14):i102-i109. PubMed ID: 28881967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-wide correspondence of neuronal epigenomics and distant projections.
    Zhou J; Zhang Z; Wu M; Liu H; Pang Y; Bartlett A; Peng Z; Ding W; Rivkin A; Lagos WN; Williams E; Lee CT; Miyazaki PA; Aldridge A; Zeng Q; Salinda JLA; Claffey N; Liem M; Fitzpatrick C; Boggeman L; Yao Z; Smith KA; Tasic B; Altshul J; Kenworthy MA; Valadon C; Nery JR; Castanon RG; Patne NS; Vu M; Rashid M; Jacobs M; Ito T; Osteen J; Emerson N; Lee J; Cho S; Rink J; Huang HH; Pinto-Duartec A; Dominguez B; Smith JB; O'Connor C; Zeng H; Chen S; Lee KF; Mukamel EA; Jin X; Margarita Behrens M; Ecker JR; Callaway EM
    Nature; 2023 Dec; 624(7991):355-365. PubMed ID: 38092919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing and Interpreting Single-Cell Gene Expression Datasets with Similarity Weighted Nonnegative Embedding.
    Wu Y; Tamayo P; Zhang K
    Cell Syst; 2018 Dec; 7(6):656-666.e4. PubMed ID: 30528274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenomics analysis of miRNA cis-regulatory elements in pig muscle and fat tissues.
    Hu M; Kuang R; Guo Y; Ma R; Hou Y; Xu Y; Qi X; Wang D; Zhou H; Xiong Y; Han X; Zhang J; Ruan J; Li X; Zhao S; Zhao Y; Xu X
    Genomics; 2022 Mar; 114(2):110276. PubMed ID: 35104610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis.
    Kobayashi S; Nagafuchi Y; Okubo M; Sugimori Y; Shirai H; Hatano H; Junko M; Yanaoka H; Takeshima Y; Ota M; Iwasaki Y; Sumitomo S; Okamura T; Yamamoto K; Shoda H; Fujio K
    J Autoimmun; 2021 Jan; 116():102547. PubMed ID: 33039247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-cell sequencing techniques from individual to multiomics analyses.
    Kashima Y; Sakamoto Y; Kaneko K; Seki M; Suzuki Y; Suzuki A
    Exp Mol Med; 2020 Sep; 52(9):1419-1427. PubMed ID: 32929221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathway-Based Single-Cell RNA-Seq Classification, Clustering, and Construction of Gene-Gene Interactions Networks Using Random Forests.
    Wang H; Sham P; Tong T; Pang H
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1814-1822. PubMed ID: 31581101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Jointly defining cell types from multiple single-cell datasets using LIGER.
    Liu J; Gao C; Sodicoff J; Kozareva V; Macosko EZ; Welch JD
    Nat Protoc; 2020 Nov; 15(11):3632-3662. PubMed ID: 33046898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.