These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30962626)

  • 1. Structure of McsB, a protein kinase for regulated arginine phosphorylation.
    Suskiewicz MJ; Hajdusits B; Beveridge R; Heuck A; Vu LD; Kurzbauer R; Hauer K; Thoeny V; Rumpel K; Mechtler K; Meinhart A; Clausen T
    Nat Chem Biol; 2019 May; 15(5):510-518. PubMed ID: 30962626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the regulation of protein-arginine kinase McsB by McsA.
    Arifuzzaman M; Kwon E; Kim DY
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320312121. PubMed ID: 38625935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis.
    Kirstein J; Turgay K
    J Mol Microbiol Biotechnol; 2005; 9(3-4):182-8. PubMed ID: 16415591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis.
    Kirstein J; Zühlke D; Gerth U; Turgay K; Hecker M
    EMBO J; 2005 Oct; 24(19):3435-45. PubMed ID: 16163393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation.
    Hajdusits B; Suskiewicz MJ; Hundt N; Meinhart A; Kurzbauer R; Leodolter J; Kukura P; Clausen T
    Elife; 2021 Jul; 10():. PubMed ID: 34328418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR.
    Fuhrmann J; Schmidt A; Spiess S; Lehner A; Turgay K; Mechtler K; Charpentier E; Clausen T
    Science; 2009 Jun; 324(5932):1323-7. PubMed ID: 19498169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine phosphorylation marks proteins for degradation by a Clp protease.
    Trentini DB; Suskiewicz MJ; Heuck A; Kurzbauer R; Deszcz L; Mechtler K; Clausen T
    Nature; 2016 Nov; 539(7627):48-53. PubMed ID: 27749819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, characterization and activation mechanism of a tyrosine kinase of Bacillus anthracis.
    Mattoo AR; Arora A; Maiti S; Singh Y
    FEBS J; 2008 Dec; 275(24):6237-47. PubMed ID: 19016839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct phosphorylation and dephosphorylation dynamics of protein arginine kinases revealed by fluorescent activity probes.
    Jung H; Choi Y; Lee D; Seo JK; Kee JM
    Chem Commun (Camb); 2019 Jul; 55(52):7482-7485. PubMed ID: 31184653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity control of the ClpC adaptor McsB in Bacillus subtilis.
    Elsholz AK; Hempel K; Michalik S; Gronau K; Becher D; Hecker M; Gerth U
    J Bacteriol; 2011 Aug; 193(15):3887-93. PubMed ID: 21622759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mechanism of phosphoregulation in signal transduction pathways.
    Jung K; Jung H
    Sci Signal; 2009 Nov; 2(96):pe71. PubMed ID: 19903937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein arginine phosphorylation in organisms.
    Huang B; Zhao Z; Zhao Y; Huang S
    Int J Biol Macromol; 2021 Feb; 171():414-422. PubMed ID: 33428953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chasing Phosphoarginine Proteins: Development of a Selective Enrichment Method Using a Phosphatase Trap.
    Trentini DB; Fuhrmann J; Mechtler K; Clausen T
    Mol Cell Proteomics; 2014 Aug; 13(8):1953-64. PubMed ID: 24825175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis.
    Zhang A; Pompeo F; Galinier A
    Res Microbiol; 2021; 172(7-8):103871. PubMed ID: 34500011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein histidine kinases: assembly of active sites and their regulation in signaling pathways.
    Stewart RC
    Curr Opin Microbiol; 2010 Apr; 13(2):133-41. PubMed ID: 20117042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for recognizing phosphoarginine and evolving residue-specific protein phosphatases in gram-positive bacteria.
    Fuhrmann J; Mierzwa B; Trentini DB; Spiess S; Lehner A; Charpentier E; Clausen T
    Cell Rep; 2013 Jun; 3(6):1832-9. PubMed ID: 23770242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators.
    Kalantari A; Derouiche A; Shi L; Mijakovic I
    Microbiology (Reading); 2015 Sep; 161(9):1720-1729. PubMed ID: 26220449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in
    Lilge L; Reder A; Tippmann F; Morgenroth F; Grohmann J; Becher D; Riedel K; Völker U; Hecker M; Gerth U
    Front Microbiol; 2020; 11():900. PubMed ID: 32477307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.
    Schmidt A; Trentini DB; Spiess S; Fuhrmann J; Ammerer G; Mechtler K; Clausen T
    Mol Cell Proteomics; 2014 Feb; 13(2):537-50. PubMed ID: 24263382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
    Elsholz AK; Turgay K; Michalik S; Hessling B; Gronau K; Oertel D; Mäder U; Bernhardt J; Becher D; Hecker M; Gerth U
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7451-6. PubMed ID: 22517742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.