These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30962903)

  • 1. Developmental and genetic effects on behavioral and life-history traits in a field cricket.
    Wey TW; Réale D; Kelly CD
    Ecol Evol; 2019 Mar; 9(6):3434-3445. PubMed ID: 30962903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the importance of genotypic variation, metabolic rate, morphology, sex and development time on immune function in the cricket, Gryllus firmus.
    Rantala MJ; Roff DA
    J Evol Biol; 2006 May; 19(3):834-43. PubMed ID: 16674580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations.
    Laurila A; Karttunen S; Merilä J
    Evolution; 2002 Mar; 56(3):617-27. PubMed ID: 11989690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE EFFECT OF A VARIABLE ENVIRONMENT ON THE GENETIC CORRELATION STRUCTURE IN A FIELD CRICKET.
    Simons AM; Roff DA
    Evolution; 1996 Feb; 50(1):267-275. PubMed ID: 28568858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THE EFFECT OF ENVIRONMENTAL VARIABILITY ON THE HERITABILITIES OF TRAITS OF A FIELD CRICKET.
    Simons AM; Roff DA
    Evolution; 1994 Oct; 48(5):1637-1649. PubMed ID: 28568421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature and wing morphology on quantitative genetic variation in the cricket Gryllus firmus, with an appendix examining the statistical properties of the Jackknife-MANOVA method of matrix comparison.
    Bégin M; Roff DA; Debat V
    J Evol Biol; 2004 Nov; 17(6):1255-67. PubMed ID: 15525410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Australian black field crickets show changes in neural gene expression associated with socially-induced morphological, life-history, and behavioral plasticity.
    Kasumovic MM; Chen Z; Wilkins MR
    BMC Genomics; 2016 Oct; 17(1):827. PubMed ID: 27776492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extra-nuclear effects on growth and development in the sand cricket Gryllus firmus.
    Roff DA; Sokolovska N
    J Evol Biol; 2004 May; 17(3):663-71. PubMed ID: 15149408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indirect genetic and environmental effects on behaviors, morphology, and life-history traits in a wild Eastern chipmunk population.
    Santostefano F; Allegue H; Garant D; Bergeron P; Réale D
    Evolution; 2021 Jun; 75(6):1492-1512. PubMed ID: 33855713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.
    Roff DA; Fairbairn DJ
    J Evol Biol; 2011 Sep; 24(9):1857-69. PubMed ID: 21635603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution.
    Fokkema RW; Korsten P; Schmoll T; Wilson AJ
    Biol Rev Camb Philos Soc; 2021 Dec; 96(6):2561-2572. PubMed ID: 34145714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of G matrix variation in two closely related cricket species, Gryllus firmus and G. pennsylvanicus.
    Bégin M; Roff DA
    J Evol Biol; 2001 Jan; 14(1):1-13. PubMed ID: 29280575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
    Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP
    Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inbreeding, developmental stabilty, and canalization in the sand cricket Gryllus firmus.
    Réale D; Roff DA
    Evolution; 2003 Mar; 57(3):597-605. PubMed ID: 12703949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex genotype by environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus.
    Nystrand M; Dowling DK; Simmons LW
    BMC Evol Biol; 2011 Jul; 11():222. PubMed ID: 21791118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative genetic variation of metabolism in the nymphs of the sand cricket, Gryllus firmus, inferred from an analysis of inbred-lines.
    Nespolo RF; Castañeda LE; Roff DA
    Biol Res; 2007; 40(1):5-12. PubMed ID: 17657350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quantitative genetics of fluctuating asymmetry: a comparison of two models.
    Roff D; Réale D
    Evolution; 2004 Jan; 58(1):47-58. PubMed ID: 15058718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heritability and social brood effects on personality in juvenile and adult life-history stages in a wild passerine.
    Winney IS; Schroeder J; Nakagawa S; Hsu YH; Simons MJP; Sánchez-Tójar A; Mannarelli ME; Burke T
    J Evol Biol; 2018 Jan; 31(1):75-87. PubMed ID: 29044885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Heritability of Behavior: A Meta-analysis.
    Dochtermann NA; Schwab T; Anderson Berdal M; Dalos J; Royauté R
    J Hered; 2019 Jul; 110(4):403-410. PubMed ID: 31116388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Selection-by-Environment but Not Genotype-by-Environment Interactions for Fitness-Related Traits in a Wild Mammal Population.
    Hayward AD; Pemberton JM; Berenos C; Wilson AJ; Pilkington JG; Kruuk LEB
    Genetics; 2018 Jan; 208(1):349-364. PubMed ID: 29127262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.