These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30962921)

  • 1. Quo vadis, plasmonic optical tweezers?
    Crozier KB
    Light Sci Appl; 2019; 8():35. PubMed ID: 30962921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic tweezers: for nanoscale optical trapping and beyond.
    Zhang Y; Min C; Dou X; Wang X; Urbach HP; Somekh MG; Yuan X
    Light Sci Appl; 2021 Mar; 10(1):59. PubMed ID: 33731693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
    Ren Y; Chen Q; He M; Zhang X; Qi H; Yan Y
    ACS Nano; 2021 Apr; 15(4):6105-6128. PubMed ID: 33834771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.
    Shoji T; Tsuboi Y
    J Phys Chem Lett; 2014 Sep; 5(17):2957-67. PubMed ID: 26278243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic trapping with a gold nanopillar.
    Wang K; Crozier KB
    Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and Future of Plasmonic Optical Tweezers.
    Huang JS; Yang YT
    Nanomaterials (Basel); 2015 Jun; 5(2):1048-1065. PubMed ID: 28347051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle manipulation using plasmonic optical tweezers based on particle sizes and refractive indices.
    Li H; Ren Y; Li Y; He M; Gao B; Qi H
    Opt Express; 2022 Sep; 30(19):34092-34105. PubMed ID: 36242430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical tweezing and binding at high irradiation powers on black-Si.
    Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y
    Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Plasmonic Spanner for Metal Particle Manipulation.
    Zhang Y; Shi W; Shen Z; Man Z; Min C; Shen J; Zhu S; Urbach HP; Yuan X
    Sci Rep; 2015 Oct; 5():15446. PubMed ID: 26481689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold cauldrons as efficient candidates for plasmonic tweezers.
    Khosravi MA; Aqhili A; Vasini S; Khosravi MH; Darbari S; Hajizadeh F
    Sci Rep; 2020 Nov; 10(1):19356. PubMed ID: 33168879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.