These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30962921)

  • 21. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell biomagnifier for optical nanoscopes and nanotweezers.
    Li Y; Liu X; Li B
    Light Sci Appl; 2019; 8():61. PubMed ID: 31645911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic optical trapping of nanoparticles with precise angular selectivity.
    Chai RH; Zou WJ; Qian J; Chen J; Sun Q; Xu JJ
    Opt Express; 2019 Oct; 27(22):32556-32566. PubMed ID: 31684465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical trapping and manipulation for single-particle spectroscopy and microscopy.
    Chen Z; Cai Z; Liu W; Yan Z
    J Chem Phys; 2022 Aug; 157(5):050901. PubMed ID: 35933217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging.
    Gao Y; Harder R; Southworth SH; Guest JR; Huang X; Yan Z; Ocola LE; Yifat Y; Sule N; Ho PJ; Pelton M; Scherer NF; Young L
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4018-4024. PubMed ID: 30765527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas.
    Jin RC; Li JQ; Li L; Dong ZG; Liu Y
    Opt Lett; 2019 Jan; 44(2):319-322. PubMed ID: 30644890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On chip shapeable optical tweezers.
    Renaut C; Cluzel B; Dellinger J; Lalouat L; Picard E; Peyrade D; Hadji E; de Fornel F
    Sci Rep; 2013; 3():2290. PubMed ID: 23887310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Room-Temperature Molecular Manipulation via Plasmonic Trapping at Electrified Interfaces.
    Oyamada N; Minamimoto H; Murakoshi K
    J Am Chem Soc; 2022 Feb; 144(6):2755-2764. PubMed ID: 35107293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens.
    Markovich H; Shishkin II; Hendler N; Ginzburg P
    Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles.
    Kolbow JD; Lindquist NC; Ertsgaard CT; Yoo D; Oh SH
    Chemphyschem; 2021 Jul; 22(14):1409-1420. PubMed ID: 33797179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Focused plasmonic trapping of metallic particles.
    Min C; Shen Z; Shen J; Zhang Y; Fang H; Yuan G; Du L; Zhu S; Lei T; Yuan X
    Nat Commun; 2013; 4():2891. PubMed ID: 24305554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers.
    Jia P; Shi H; Yan X; Pei Y; Sun X
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28731-28738. PubMed ID: 37272915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.