These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 30962938)
1. The tomato 2-oxoglutarate-dependent dioxygenase gene Hu T; Wang Y; Wang Q; Dang N; Wang L; Liu C; Zhu J; Zhan X Hortic Res; 2019; 6():45. PubMed ID: 30962938 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). Shi X; Jiang F; Wen J; Wu Z BMC Plant Biol; 2019 May; 19(1):214. PubMed ID: 31122194 [TBL] [Abstract][Full Text] [Related]
3. Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato. Wang D; Yang Z; Wu M; Wang W; Wang Y; Nie S Plant Sci; 2022 Jul; 320():111281. PubMed ID: 35643607 [TBL] [Abstract][Full Text] [Related]
4. A tomato dynein light chain gene SlLC6D is a negative regulator of chilling stress. Hu T; Wang S; Wang Q; Xu X; Wang Q; Zhan X Plant Sci; 2021 Feb; 303():110753. PubMed ID: 33487341 [TBL] [Abstract][Full Text] [Related]
5. Jasmonate and Melatonin Act Synergistically to Potentiate Cold Tolerance in Tomato Plants. Ding F; Ren L; Xie F; Wang M; Zhang S Front Plant Sci; 2021; 12():763284. PubMed ID: 35069620 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Meng C; Zhang S; Deng YS; Wang GD; Kong FY Plant Physiol Biochem; 2015 Nov; 96():388-400. PubMed ID: 26372946 [TBL] [Abstract][Full Text] [Related]
7. The overexpression of SlBRI1 driven by Atrd29A promoter-transgenic plants improves the chilling stress tolerance of tomato. Wang D; Yang Z; Feng M; Yang W; Qu R; Nie S Planta; 2023 Dec; 259(1):11. PubMed ID: 38047928 [TBL] [Abstract][Full Text] [Related]
8. Gene network underlying the response of harvested pepper to chilling stress. Shin SY; Park MH; Choi JW; Kim JG J Plant Physiol; 2017 Dec; 219():112-122. PubMed ID: 29096083 [TBL] [Abstract][Full Text] [Related]
9. Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. Zhang X; Shen L; Li F; Zhang Y; Meng D; Sheng J J Sci Food Agric; 2010 Oct; 90(13):2195-202. PubMed ID: 20628998 [TBL] [Abstract][Full Text] [Related]
10. Reduction of Tomato-Plant Chilling Tolerance by CRISPR-Cas9-Mediated SlCBF1 Mutagenesis. Li R; Zhang L; Wang L; Chen L; Zhao R; Sheng J; Shen L J Agric Food Chem; 2018 Aug; 66(34):9042-9051. PubMed ID: 30096237 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress. Shahzad R; Ahmed F; Wang Z; Harlina PW; Nishawy E; Ayaad M; Manan A; Maher M; Ewas M J Genet Eng Biotechnol; 2020 Nov; 18(1):77. PubMed ID: 33245438 [TBL] [Abstract][Full Text] [Related]
12. SlWRKY51 regulates proline content to enhance chilling tolerance in tomato. Wang Y; Zhang M; Wu C; Chen C; Meng L; Zhang G; Zhuang K; Shi Q Plant Cell Environ; 2024 Dec; 47(12):5104-5114. PubMed ID: 39148214 [TBL] [Abstract][Full Text] [Related]
13. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Hu Y; Wu Q; Sprague SA; Park J; Oh M; Rajashekar CB; Koiwa H; Nakata PA; Cheng N; Hirschi KD; White FF; Park S Hortic Res; 2015; 2():15051. PubMed ID: 26623076 [TBL] [Abstract][Full Text] [Related]
14. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. Ding F; Wang X; Li Z; Wang M Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616188 [TBL] [Abstract][Full Text] [Related]
15. Protective Effect of γ-Aminobutyric Acid Against Chilling Stress During Reproductive Stage in Tomato Plants Through Modulation of Sugar Metabolism, Chloroplast Integrity, and Antioxidative Defense Systems. Abd Elbar OH; Elkelish A; Niedbała G; Farag R; Wojciechowski T; Mukherjee S; Abou-Hadid AF; El-Hennawy HM; Abou El-Yazied A; Abd El-Gawad HG; Azab E; Gobouri AA; El-Sawy AM; Bondok A; Ibrahim MFM Front Plant Sci; 2021; 12():663750. PubMed ID: 34733294 [TBL] [Abstract][Full Text] [Related]
16. Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Malekzadeh P; Khara J; Heydari R Physiol Mol Biol Plants; 2014 Jan; 20(1):133-7. PubMed ID: 24554847 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of Ouyang Q; Zhang Y; Yang X; Yang C; Hou D; Liu H; Xu H Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570963 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana. Song X; Diao J; Ji J; Wang G; Li Z; Wu J; Josine TL; Wang Y Gene; 2016 Jan; 576(1 Pt 3):395-403. PubMed ID: 26526130 [TBL] [Abstract][Full Text] [Related]
19. Cold Stress Tolerance in Psychrotolerant Soil Bacteria and Their Conferred Chilling Resistance in Tomato (Solanum lycopersicum Mill.) under Low Temperatures. Subramanian P; Kim K; Krishnamoorthy R; Mageswari A; Selvakumar G; Sa T PLoS One; 2016; 11(8):e0161592. PubMed ID: 27580055 [TBL] [Abstract][Full Text] [Related]
20. Brassinosteroid Biosynthetic Gene Hu S; Wang T; Shao Z; Meng F; Chen H; Wang Q; Zheng J; Liu L Antioxidants (Basel); 2022 Jan; 11(1):. PubMed ID: 35052619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]