These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30963076)

  • 1. Shallow Sparsely-Connected Autoencoders for Gene Set Projection.
    Gold MP; LeNail A; Fraenkel E
    Pac Symp Biocomput; 2019; 24():374-385. PubMed ID: 30963076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis.
    Alessandri L; Ratto ML; Contaldo SG; Beccuti M; Cordero F; Arigoni M; Calogero RA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Methods for Visualization and Analysis of High Dimensional Single-Cell RNA Sequencing Data.
    Wang T; Johnson T; Zhang J; Huang K
    Pac Symp Biocomput; 2019; 24():350-361. PubMed ID: 30963074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional-Feature-Based Data Reduction Using Sparsely Connected Autoencoders.
    Alessandri L; Calogero RA
    Methods Mol Biol; 2023; 2584():231-240. PubMed ID: 36495453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders.
    Way GP; Greene CS
    Pac Symp Biocomput; 2018; 23():80-91. PubMed ID: 29218871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and precise single-cell data analysis using a hierarchical autoencoder.
    Tran D; Nguyen H; Tran B; La Vecchia C; Luu HN; Nguyen T
    Nat Commun; 2021 Feb; 12(1):1029. PubMed ID: 33589635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining sequencing depth in a single-cell RNA-seq experiment.
    Zhang MJ; Ntranos V; Tse D
    Nat Commun; 2020 Feb; 11(1):774. PubMed ID: 32034137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DrivAER: Identification of driving transcriptional programs in single-cell RNA sequencing data.
    Simon LM; Yan F; Zhao Z
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33301553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders.
    Ruiz-Arenas C; Marín-Goñi I; Wang L; Ochoa I; Pérez-Jurado LA; Hernaez M
    Nucleic Acids Res; 2024 May; 52(9):e44. PubMed ID: 38597610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION.
    Danaee P; Ghaeini R; Hendrix DA
    Pac Symp Biocomput; 2017; 22():219-229. PubMed ID: 27896977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.
    Ching T; Zhu X; Garmire LX
    PLoS Comput Biol; 2018 Apr; 14(4):e1006076. PubMed ID: 29634719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data.
    Schuster V; Krogh A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data.
    Carilli M; Gorin G; Choi Y; Chari T; Pachter L
    Nat Methods; 2024 Aug; 21(8):1466-1469. PubMed ID: 39054391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
    Kopf A; Fortuin V; Somnath VR; Claassen M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009086. PubMed ID: 34191792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring.
    Wang K; Yuan X; Chen J; Wang Y
    Neural Netw; 2021 Apr; 136():54-62. PubMed ID: 33445005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Nov; 166():99-105. PubMed ID: 30415723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.