These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30963108)

  • 41. A test of macromolecular crystallization in microgravity: large well ordered insulin crystals.
    Borgstahl GE; Vahedi-Faridi A; Lovelace J; Bellamy HD; Snell EH
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1204-7. PubMed ID: 11468418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein crystal growth in microgravity.
    DeLucas LJ; Smith CD; Smith HW; Vijay-Kumar S; Senadhi SE; Ealick SE; Carter DC; Snyder RS; Weber PC; Salemme FR
    Science; 1989 Nov; 246(4930):651-4. PubMed ID: 2510297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal Growth of Ca₃Nb(Ga
    Yokota Y; Kudo T; Ohashi Y; Medvedev A; Kurosawa S; Kamada K; Yoshikawa A
    Materials (Basel); 2015 Aug; 8(9):5597-5605. PubMed ID: 28793525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Apocrustacyanin C(1) crystals grown in space and on earth using vapour-diffusion geometry: protein structure refinements and electron-density map comparisons.
    Habash J; Boggon TJ; Raftery J; Chayen NE; Zagalsky PF; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1117-23. PubMed ID: 12832753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein crystallization in space.
    Bi RC; Gui LL; Han Q; Shen FL; Shi K; Wang YP; Chen SZ; Hu YL; Niu XT; Dong J; Zhou YC; Lin NQ
    Microgravity Sci Technol; 1994 Jul; 7(2):203-6. PubMed ID: 11541853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein crystal growth in the Advanced Protein Crystallization Facility on the LMS mission: a comparison of Sulfolobus solfataricus alcohol dehydrogenase crystals grown on the ground and in microgravity.
    Esposito L; Sica F; Sorrentino G; Berisio R; Carotenuto L; Giordano A; Raia CA; Rossi M; Lamzin VS; Wilson KS; Zagari A
    Acta Crystallogr D Biol Crystallogr; 1998 May; 54(Pt 3):386-90. PubMed ID: 11541089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of the three-dimensional structures of a human Bence-Jones dimer crystallized on Earth and aboard US Space Shuttle Mission STS-95.
    Terzyan SS; Bourne CR; Ramsland PA; Bourne PC; Edmundson AB
    J Mol Recognit; 2003; 16(2):83-90. PubMed ID: 12720277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microstructural characterization of high indium-composition InXGa₁-XN epilayers grown on c-plane sapphire substrates.
    Jeong M; Lee HS; Han SK; Eun-Jung-Shin ; Hong SK; Lee JY; Park YC; Yang JM; Yao T
    Microsc Microanal; 2013 Aug; 19 Suppl 5():145-8. PubMed ID: 23920194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bound-solvent structures for microgravity-, ground control-, gel- and microbatch-grown hen egg-white lysozyme crystals at 1.8 A resolution.
    Dong J; Boggon TJ; Chayen NE; Raftery J; Bi RC; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 1999 Apr; 55(Pt 4):745-52. PubMed ID: 10089304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bromine enrichment in the near-surface region of Br-doped NaCl single crystals diagnosed by Rutherford backscattering spectrometry.
    Hess M; Krieger UK; Marcolli C; Huthwelker T; Ammann M; Lanford WA; Peter T
    J Phys Chem A; 2007 May; 111(20):4312-21. PubMed ID: 17461554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon.
    Ng KW; Ko WS; Chen R; Lu F; Tran TT; Li K; Chang-Hasnain CJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16706-11. PubMed ID: 25221844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability.
    Jones DEH; Walter U
    J Colloid Interface Sci; 1998 Jul; 203(2):286-93. PubMed ID: 9705766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strong magnetic field effect on the dissolution process of tetragonal lysozyme crystals.
    Yin DC; Wakayama NI; Inatomi Y; Huang WD; Kuribayashi K
    Adv Space Res; 2003; 32(2):217-23. PubMed ID: 14696590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water.
    Furukawa Y; Nagashima K; Nakatsubo SI; Yoshizaki I; Tamaru H; Shimaoka T; Sone T; Yokoyama E; Zepeda S; Terasawa T; Asakawa H; Murata KI; Sazaki G
    Sci Rep; 2017 Mar; 7():43157. PubMed ID: 28262787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Space-grown protein crystals are more useful for structure determination.
    Ng JD
    Ann N Y Acad Sci; 2002 Oct; 974():598-609. PubMed ID: 12446351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of microgravity on the solidification of aluminum-bismuth-tin immiscible alloys.
    Jiang H; Li S; Zhang L; He J; Zhao J
    NPJ Microgravity; 2019; 5():26. PubMed ID: 31754626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.
    Nakamura A; Ohtsuka J; Kashiwagi T; Numoto N; Hirota N; Ode T; Okada H; Nagata K; Kiyohara M; Suzuki E; Kita A; Wada H; Tanokura M
    Sci Rep; 2016 Feb; 6():22127. PubMed ID: 26916802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red.
    Roche E; André Y; Avit G; Bougerol C; Castelluci D; Réveret F; Gil E; Médard F; Leymarie J; Jean T; Dubrovskii VG; Trassoudaine A
    Nanotechnology; 2018 Nov; 29(46):465602. PubMed ID: 30160245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of gravitropic stress on the development of the primary root of lentil seedlings grown in space.
    Legué V; Yu F; Driss-Ecole D; Perbal G
    J Biotechnol; 1996 Jun; 47(2-3):129-35. PubMed ID: 11536755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895.
    Kim HW; Rhee MS
    Appl Environ Microbiol; 2016 May; 82(10):2893-2901. PubMed ID: 26944847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.