These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30963165)

  • 1. A Smart Box with Adjustable Cooling Rate for Cryopreservation.
    Zhu K; Hossain SM; Li Y; Yuan F; Hu P; Yuan F
    Cryo Letters; 2018; 39(5):331-335. PubMed ID: 30963165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreservation of Peripheral Blood Stem Cells Using a Box-in-Box Cooling Device.
    Zhou X; Kang X; Shu Z; Chen H; Ding W; Du P; Yadock D; Chi Liu C; Chung JH; Heimfeld S; Gao D
    Biopreserv Biobank; 2009 Jun; 7(2):107-14. PubMed ID: 24835682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of a Simple and Cost-Effective Passive Cooling Rate-Controlled Device for Cell/Tissue Cryopreservation.
    Huang Y; Wang J; Zhou X; Peng J; Zhang Z; Shen L; Gao F; Cao Y
    Biopreserv Biobank; 2017 Oct; 15(5):432-437. PubMed ID: 28829621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a reliable low-cost controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells.
    Shu Z; Kang X; Chen H; Zhou X; Purtteman J; Yadock D; Heimfeld S; Gao D
    Cytotherapy; 2010 Apr; 12(2):161-9. PubMed ID: 19929459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DESIGN OF A SIMPLE SLOW COOLING DEVICE FOR CRYOPRESERVATION OF SMALL BIOLOGICAL SAMPLES.
    de Paz LJ; Robert MC; Graf DA; Guibert EE; Rodriguez JV
    Cryo Letters; 2015; 36(6):363-71. PubMed ID: 26963882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
    Santos MV; Sansinena M; Chirife J; Zaritzky N
    Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple and Reliable Cooling Approach for the Cryopreservation of Hematopoietic Stem Cells: the Passive Cooling Rate-controlled Technique.
    Huang Y; Chapal Hossain SM; Memon K; Peng J; Wang J; Shu Z; Ma K; Shen L; Gao FL; Cao Y; Zhao G
    Cryo Letters; 2019; 40(3):181-186. PubMed ID: 31095667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Theriogenology; 2012 May; 77(8):1717-21. PubMed ID: 22225685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.
    Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ
    Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled rate cooling of fungi using a stirling cycle freezer.
    Ryan MJ; Kasulyte-Creasey D; Kermode A; San SP; Buddie AG
    Cryo Letters; 2014; 35(1):63-9. PubMed ID: 24872159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A custom-built controlled-rate freezer for small sample cryopreservation studies.
    Medrano A; Anderson J; Millar JD; Holt WV; Watson PF
    Cryo Letters; 2002; 23(6):397-404. PubMed ID: 12522510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.
    Wang T; Zhao G; Tang HY; Jiang ZD
    Cryo Letters; 2015; 36(4):285-8. PubMed ID: 26576004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of interruptions of controlled-rate freezing on the viability of umbilical cord blood stem cells.
    Yang H; Pidgorna A; Loutfy MR; Shuen P
    Transfusion; 2015 Jan; 55(1):70-8. PubMed ID: 25039650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of uncontrolled cooling during sterlet (Acipenser ruthenus) sperm cryopreservation on post-thaw motility and fertilizing ability.
    Horokhovatskyi Y; Rodina M; Asyabar HD; Boryshpolets S; Dzyuba B
    Theriogenology; 2017 Jun; 95():89-95. PubMed ID: 28460686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooling rate optimization for zebrafish sperm cryopreservation using a cryomicroscope coupled with SYBR14/PI dual staining.
    Bai C; Wang X; Lu G; Wei L; Liu K; Gao H; Huang C; Dong Q
    Cryobiology; 2013 Oct; 67(2):117-23. PubMed ID: 23747540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.
    Sansinen M; Santos MV; Zaritzky N; Baez R; Chirife J
    Cryo Letters; 2010; 31(2):120-9. PubMed ID: 20687454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.
    Wang Y; Zhou XM; Jiang CJ; Yu YT
    Cryo Letters; 2018; 39(1):1-6. PubMed ID: 29734410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.