These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 30963196)
1. Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean. Shi S; Chang J; Tian L; Nasir F; Ji L; Li X; Tian C Arch Microbiol; 2019 Sep; 201(7):879-888. PubMed ID: 30963196 [TBL] [Abstract][Full Text] [Related]
2. Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae. Shi S; Tian L; Nasir F; Li X; Li W; Tran LP; Tian C Plant Physiol Biochem; 2018 Nov; 132():156-165. PubMed ID: 30195107 [TBL] [Abstract][Full Text] [Related]
3. The rhizomicrobiomes of wild and cultivated crops react differently to fungicides. Shi S; Tian L; Xu S; Ji L; Nasir F; Li X; Song Z; Tian C Arch Microbiol; 2019 May; 201(4):477-486. PubMed ID: 30361816 [TBL] [Abstract][Full Text] [Related]
4. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping. Tian L; Shi S; Ma L; Tran LP; Tian C Microbiol Res; 2020 Feb; 232():126390. PubMed ID: 31855689 [TBL] [Abstract][Full Text] [Related]
5. A review on the impact of domestication of the rhizosphere of grain crops and a perspective on the potential role of the rhizosphere microbial community for sustainable rice crop production. Chang J; van Veen JA; Tian C; Kuramae EE Sci Total Environ; 2022 Oct; 842():156706. PubMed ID: 35724776 [TBL] [Abstract][Full Text] [Related]
6. Comparison of methane metabolism in the rhizomicrobiomes of wild and related cultivated rice accessions reveals a strong impact of crop domestication. Tian L; Chang J; Shi S; Ji L; Zhang J; Sun Y; Li X; Li X; Xie H; Cai Y; Chen D; Wang J; van Veen JA; Kuramae EE; Tran LP; Tian C Sci Total Environ; 2022 Jan; 803():150131. PubMed ID: 34788940 [TBL] [Abstract][Full Text] [Related]
7. Shaping effects of rice, wheat, maize, and soybean seedlings on their rhizosphere microbial community. Zhang F; Xu N; Zhang Z; Zhang Q; Yang Y; Yu Z; Sun L; Lu T; Qian H Environ Sci Pollut Res Int; 2023 Mar; 30(13):35972-35984. PubMed ID: 36539666 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. Zhang F; Xu T; Mao L; Yan S; Chen X; Wu Z; Chen R; Luo X; Xie J; Gao S BMC Plant Biol; 2016 Apr; 16():103. PubMed ID: 27118394 [TBL] [Abstract][Full Text] [Related]
9. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Londo JP; Chiang YC; Hung KH; Chiang TY; Schaal BA Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9578-83. PubMed ID: 16766658 [TBL] [Abstract][Full Text] [Related]
10. Root microbiota analysis of Jiang L; Ke D; Sun B; Zhang J; Lyu S; Yu H; Chen P; Mao X; Liu Q; Chen W; Fan Z; Huang L; Yin S; Deng Y; Li C Microbiol Spectr; 2024 Apr; 12(4):e0333023. PubMed ID: 38470483 [TBL] [Abstract][Full Text] [Related]
11. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Zhu Q; Zheng X; Luo J; Gaut BS; Ge S Mol Biol Evol; 2007 Mar; 24(3):875-88. PubMed ID: 17218640 [TBL] [Abstract][Full Text] [Related]
12. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng. Fang X; Wang H; Zhao L; Wang M; Sun M BMC Microbiol; 2022 Jan; 22(1):2. PubMed ID: 34979908 [TBL] [Abstract][Full Text] [Related]
13. Effect of Wild and Cultivated Rice Genotypes on Rhizosphere Bacterial Community Composition. Shenton M; Iwamoto C; Kurata N; Ikeo K Rice (N Y); 2016 Dec; 9(1):42. PubMed ID: 27557607 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon). Liu Y; Wang W; Li Y; Liu F; Han W; Li J J Proteomics; 2021 Feb; 232():104051. PubMed ID: 33217583 [TBL] [Abstract][Full Text] [Related]
15. The Genomics of Chen E; Huang X; Tian Z; Wing RA; Han B Annu Rev Plant Biol; 2019 Apr; 70():639-665. PubMed ID: 31035826 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus Input Alters the Assembly of Rice (Oryza sativa L.) Root-Associated Communities. Long XE; Yao H Microb Ecol; 2020 Feb; 79(2):357-366. PubMed ID: 31342100 [TBL] [Abstract][Full Text] [Related]
17. Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice. Cui Y; Song BK; Li LF; Li YL; Huang Z; Caicedo AL; Jia Y; Olsen KM G3 (Bethesda); 2016 Dec; 6(12):4105-4114. PubMed ID: 27729434 [TBL] [Abstract][Full Text] [Related]
18. The Untapped Genetic Reservoir: The Past, Current, and Future Applications of the Wild Soybean ( Kofsky J; Zhang H; Song BH Front Plant Sci; 2018; 9():949. PubMed ID: 30038633 [TBL] [Abstract][Full Text] [Related]
19. Exploring the core microbiota in scented rice (Oryza sativa L.) rhizosphere through metagenomics approach. Dhondge HV; Barvkar VT; Paul D; Dastager SG; Pable AA; Nadaf AB Microbiol Res; 2022 Oct; 263():127157. PubMed ID: 35944355 [TBL] [Abstract][Full Text] [Related]
20. Domestication caused taxonomical and functional shifts in the wheat rhizosphere microbiota, and weakened the natural bacterial biocontrol against fungal pathogens. Abdullaeva Y; Ratering S; Rosado-Porto D; Ambika Manirajan B; Glatt A; Schnell S; Cardinale M Microbiol Res; 2024 Apr; 281():127601. PubMed ID: 38218094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]