BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30963245)

  • 1. Hydrogen peroxide, a potent inducer of global genomic instability.
    Qi L; Wu XC; Zheng DQ
    Curr Genet; 2019 Aug; 65(4):913-917. PubMed ID: 30963245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast.
    Zhang K; Zheng DQ; Sui Y; Qi L; Petes TD
    Nucleic Acids Res; 2019 Apr; 47(7):3521-3535. PubMed ID: 30668788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae.
    Zheng DQ; Zhang K; Wu XC; Mieczkowski PA; Petes TD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8114-E8121. PubMed ID: 27911848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model.
    Qi L; Zhang K; Wang YT; Wu JK; Sui Y; Liang XZ; Yu LZ; Wu XC; Wang PM; Xu JZ; Zheng DQ
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31300396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.
    Wilhelm T; Ragu S; Magdalou I; Machon C; Dardillac E; Técher H; Guitton J; Debatisse M; Lopez BS
    PLoS Genet; 2016 May; 12(5):e1006007. PubMed ID: 27135742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aneuploidy drives genomic instability in yeast.
    Sheltzer JM; Blank HM; Pfau SJ; Tange Y; George BM; Humpton TJ; Brito IL; Hiraoka Y; Niwa O; Amon A
    Science; 2011 Aug; 333(6045):1026-30. PubMed ID: 21852501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global genomic instability caused by reduced expression of DNA polymerase ε in yeast.
    Zhang K; Sui Y; Li WL; Chen G; Wu XC; Kokoska RJ; Petes TD; Zheng DQ
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2119588119. PubMed ID: 35290114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress preferentially induces a subtype of micronuclei and mediates the genomic instability caused by p53 dysfunction.
    Xu B; Wang W; Guo H; Sun Z; Wei Z; Zhang X; Liu Z; Tischfield JA; Gong Y; Shao C
    Mutat Res; 2014 Dec; 770():1-8. PubMed ID: 25302047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide prolongs mitotic arrest in a dose dependent manner and independently of the spindle assembly checkpoint activity in Saccharomyces cerevisiae.
    Atalay PB; Asci O; Kaya FO; Tuna BG
    Acta Biol Hung; 2017 Dec; 68(4):477-489. PubMed ID: 29262707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping chromosomal instability induced by small-molecular therapeutics in a yeast model.
    Sheng H; Qi L; Sui Y; Li YZ; Yu LZ; Zhang K; Xu JZ; Wang PM; Zheng DQ
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4869-4880. PubMed ID: 31053912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic instability in budding and fission yeast-sources and mechanisms.
    Skoneczna A; Kaniak A; Skoneczny M
    FEMS Microbiol Rev; 2015 Nov; 39(6):917-67. PubMed ID: 26109598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae.
    Choi JE; Heo SH; Kim MJ; Chung WH
    Free Radic Biol Med; 2018 Dec; 129():97-106. PubMed ID: 30223018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.
    Dzierzbicki P; Kaniak-Golik A; Malc E; Mieczkowski P; Ciesla Z
    Mutat Res; 2012 Dec; 740(1-2):21-33. PubMed ID: 23276591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA.
    Kochenova OV; Daee DL; Mertz TM; Shcherbakova PV
    PLoS Genet; 2015 Mar; 11(3):e1005110. PubMed ID: 25826305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis.
    Bindra RS; Glazer PM
    Mutat Res; 2005 Jan; 569(1-2):75-85. PubMed ID: 15603753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
    Morris LP; Conley AB; Degtyareva N; Jordan IK; Doetsch PW
    Yeast; 2017 Nov; 34(11):447-458. PubMed ID: 28752642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model.
    Zhu Y-X; He M; Li K-J; Wang Y-K; Qian N; Wang Z-F; Sheng H; Sui Y; Zhang D-D; Zhang K; Qi L; Zheng D-Q
    Appl Environ Microbiol; 2024 Jan; 90(1):e0164923. PubMed ID: 38108644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae.
    Salmon TB; Evert BA; Song B; Doetsch PW
    Nucleic Acids Res; 2004; 32(12):3712-23. PubMed ID: 15254273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.